On Rectilinear Duals for Vertex-Weighted Plane Graphs

  • Mark de Berg
  • Elena Mumford
  • Bettina Speckmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

Abstract

Let \({\mathcal G}\) = (V,E) be a plane triangulated graph where each vertex is assigned a positive weight. A rectilinear dual of \({\mathcal G}\) is a partition of a rectangle into |V| simple rectilinear regions, one for each vertex, such that two regions are adjacent if and only if the corresponding vertices are connected by an edge in E. A rectilinear dual is called a cartogram if the area of each region is equal to the weight of the corresponding vertex. We show that every vertex-weighted plane triangulated graph \({\mathcal G}\) admits a cartogram of constant complexity, that is, a cartogram where the number of vertices of each region is constant.

References

  1. 1.
    Bhasker, J., Sahni, S.: A linear algorithm to check for the existence of a rectangular dual of a planar triangulated graph. Networks 7, 307–317 (1987)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Biedl, T., Genc, B.: Complexity of octagonal and rectangular cartograms. In: Proceedings of the 17th Canadian Conference on Computational Geometry, pp. 117–120 (2005)Google Scholar
  3. 3.
    d’Amore, F., Franciosa, P.G.: On the optimal binary plane partition for sets of isothetic rectangles. Information Processing Letters 44(5), 255–259 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dent, B.: Cartography - thematic map design, 5th edn. McGraw-Hill, New York (1999)Google Scholar
  5. 5.
    Dougenik, J.A., Chrisman, N.R., Niemeyer, D.R.: An algorithm to construct continous area cartograms. Professional Geographer 37, 75–81 (1985)CrossRefGoogle Scholar
  6. 6.
    Heilmann, R., Keim, D.A., Panse, C., Sips, M.: Recmap: Rectangular map approximations. In: Proceedings of the IEEE Symposium on Information Visualization (INFOVIS), pp. 33–40 (2004)Google Scholar
  7. 7.
    Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science 172, 175–193 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Koźmiński, K., Kinnen, E.: Rectangular dual of planar graphs. Networks 5, 145–157 (1985)Google Scholar
  9. 9.
    Liao, C.-C., Lu, H.-I., Yen, H.-C.: Floor-planning using orderly spanning trees. Journal of Algorithms 48, 441–451 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
  11. 11.
    Rahman, M.S., Miura, K., Nishizeki, T.: Octagonal drawings of plane graphs with prescribed face areas. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 320–331. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Raisz, E.: The rectangular statistical cartogram. Geographical Review 24, 292–296 (1934)CrossRefGoogle Scholar
  13. 13.
    Thomassen, C.: Plane cubic graphs with prescribed face areas. Combinatorics, Probability and Computing 1, 371–381 (1992)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    van Kreveld, M., Speckmann, B.: On rectangular cartograms. Computational Geometry: Theory and Applications (2005) (to appear)Google Scholar
  15. 15.
    Yeap, G.K., Sarrafzadeh, M.: Sliceable floorplanning by graph dualization. SIAM Journal of Discrete Mathematics 8(2), 258–280 (1995)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mark de Berg
    • 1
  • Elena Mumford
    • 1
  • Bettina Speckmann
    • 1
  1. 1.Department of Mathematics & Computer ScienceTU EindhovenThe Netherlands

Personalised recommendations