Drawing Clustered Graphs in Three Dimensions

  • Joshua Ho
  • Seok-Hee Hong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


Clustered graph is a very useful model for drawing large and complex networks. This paper presents a new method for drawing clustered graphs in three dimensions. The method uses a divide and conquer approach. More specifically, it draws each cluster in a 2D plane to minimise occlusion and ease navigation. Then a 3D drawing of the whole graph is constructed by combining these 2D drawings.

Our main contribution is to develop three linear time weighted tree drawing algorithms in three dimensions for clustered graph layout. Further, we have implemented a series of six different layouts for clustered graphs by combining three 3D tree layouts and two 2D graph layouts. The experimental results with metabolic pathways show that our method can produce a nice drawing of a clustered graph which clearly shows visual separation of the clusters, as well as highlighting the relationships between the clusters. Sample drawings are available from


  1. 1.
    Ahmed, A., Dwyer, T., Forster, M., Fu, X., Ho, J., Hong, S., Koschützki, D., Murray, C., Nikolov, N., Tarassov, A., Taib, R., Xu, K.: GEOMI: GEOmetry for MAximum Insight. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 468–479. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Brandenburg, F., Forster, M., Pick, A., Raitner, M., Schreiber, F.: BioPath. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 455–456. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Dwyer, T., Schreiber, F.: Visualization of Related Metabolic Pathways in Two and a Half Dimensions. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 111–122. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Carriere, J., Kazman, R.: Visualization of Huge Hierarchies: Beyond Cone Trees. In: Proceedings of IEEE Symposium on Information Visualization 1995, pp. 74–81 (1995)Google Scholar
  5. 5.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  6. 6.
    Eades, P., Feng, Q.: Multilevel Visualization of Clustered Graphs. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 101–112. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Frishman, Y., Tal, A.: Dynamic Drawing of Clustered Graphs. In: Proceedings of IEEE Symposium on Information Visualization 2004, pp. 191–198 (2004)Google Scholar
  8. 8.
    Genc, B., Dogrusoz, U.: A Constrained, Force-Directed Layout Algorithm for Biological Pathways. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 314–319. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    van Ham, F., van de Wetering, H., can Wijk, J.: Visualization of State Transition Graph. In: Proceedings of IEEE Symposium on Information Visualization 2001, pp. 59–63 (2003)Google Scholar
  10. 10.
    Himsolt, M.: GML: Graph Modelling Language. Report, University of Passau, Germany (December 1996),
  11. 11.
    Hong, S., Eades, P.: Drawing Trees Symmetrically in Three Dimensions. Algorithmica 36(2), 153–178 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Robertson, G., Mackinkay, J., Card, S.: Cone Trees: Animated 3D Visualizations of Hierarchical Information. In: Proceedings of CHI 1991, pp. 189–194 (1991)Google Scholar
  13. 13.
    Ware, C., Franck, G.: Viewing a Graph in a Virtual Reality Display is Three Times as Good as a 2-D Diagram. In: IEEE Conference on Visual Languages, pp. 182–183 (1994)Google Scholar
  14. 14.
    Ware, C.: Designing with a 2 1/2D Attitude. Information Design Journal 10(3), 171–182 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joshua Ho
    • 1
    • 2
  • Seok-Hee Hong
    • 1
    • 2
  1. 1.IMAGEN ProgramNICTA (National ICT Australia) 
  2. 2.School of ITUniversity of SydneyAustralia

Personalised recommendations