Odd Crossing Number Is Not Crossing Number

  • Michael J. Pelsmajer
  • Marcus Schaefer
  • Daniel Štefankovič
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


The crossing number of a graph is the minimum number of edge intersections in a plane drawing of a graph, where each intersection is counted separately. If instead we count the number of pairs of edges that intersect an odd number of times, we obtain the odd crossing number. We show that there is a graph for which these two concepts differ, answering a well-known open question on crossing numbers. To derive the result we study drawings of maps (graphs with rotation systems).


  1. 1.
    Archdeacon, D.: Problems in topological graph theory, April 7, 2005)
  2. 2.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods 4(3), 312–316 (1983)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gross, J.L., Tucker, T.W.: Topological graph theory, p. 361. Dover Publications Inc., Mineola (2001); Reprint of the 1987 originalMATHGoogle Scholar
  4. 4.
    Chojnacki, C. (Haim Hanani): Uber wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fundamenta Mathematicae 23, 135–142 (1934)Google Scholar
  5. 5.
    Kolman, P., Matoušek, J.: Crossing number, pair-crossing number, and expansion. J. Combin. Theory Ser. B 92(1), 99–113 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Pach, J.: Crossing numbers. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 267–273. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser. B 80(2), 225–246 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings (April 2005) (manuscript)Google Scholar
  9. 9.
    Székely, L.A.: A successful concept for measuring non-planarity of graphs: the crossing number. Discrete Math. 276(1-3), 331–352 (2004); 6th International Conference on Graph TheoryMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8, 45–53 (1970)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pavel Valtr. On the pair-crossing number (manuscript)Google Scholar
  12. 12.
    West, D.: Open problems - graph theory and combinatorics., (accessed April 7, 2005)

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael J. Pelsmajer
    • 1
  • Marcus Schaefer
    • 2
  • Daniel Štefankovič
    • 3
    • 4
  1. 1.Department of Applied MathematicsIllinois Institute of TechnologyChicago
  2. 2.Department of Computer ScienceDePaul UniversityChicago
  3. 3.Department of Computer ScienceUniversity of RochesterRochester
  4. 4.Department of Computer ScienceComenius UniversityBratislavaSlovakia

Personalised recommendations