Applications of Parameterized st-Orientations in Graph Drawing Algorithms

  • Charalampos Papamanthou
  • Ioannis G. Tollis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


Many graph drawing algorithms use st-numberings (st-orien-tations or bipolar orientations) as a first step. An st-numbering of a biconnected undirected graph defines a directed graph with no cycles, one single source s and one single sink t. As there exist exponentially many st-numberings that correspond to a certain undirected graph G, using different st-numberings in various graph drawing algorithms can result in aesthetically different drawings with different area bounds. In this paper, we present results concerning new algorithms for parameterized st-orientations, their impact on graph drawing algorithms and especially in visibility representations.


  1. 1.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  2. 2.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Disc. and Comp. Geom. 1, 321–341 (1986)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings. Computational Geometry: Theory and Applications 9, 83–110 (1998)MATHMathSciNetGoogle Scholar
  4. 4.
    Even, S., Tarjan, R.: Computing an st-numbering. Theoretical Computer Science 2, 339–344 (1976)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: Rosestiehl, P. (ed.) Theory of Graphs: International Symposium, July 1966, pp. 215–232 (1967)Google Scholar
  6. 6.
    Ebert, J.: St-ordering the vertices of biconenected graphs. Computing 30(1), 19–33 (1983)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Tarjan, R.: Two streamlined depth-first search algorithms. Fundamentae Informatica 9, 85–94 (1986)MATHMathSciNetGoogle Scholar
  8. 8.
    Rosehnstiehl, P., Tarjan, R.: Rectilinear planar layout and bipolar orientation of planar graphs. Discrete Comput. Geom. 1, 343–353 (1986)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Maon, Y., Schieber, B., Vishkin, U.: Parallel ear decomposition search (eds) and st-numbering in graphs. Theoret. Comput. Sci. 47, 277–298 (1986)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fraysseix, H.D., de Mendez, P.O., Rosenstiehl, P.: Bipolar orientations revisited. Discrete Applied Mathematics 56, 157–179 (1995)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Papamanthou, C., Tollis, I.G.: Algorithms for parameterized st-orientations of graphs. Submitted to ESA 2005 (2005)Google Scholar
  12. 12.
    Hopcroft, J., Tarjan, R.: Efficient algorithms for graph manipulation. Comm. ACM 16, 372–378 (1973)CrossRefGoogle Scholar
  13. 13.
    Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge and biconnectivity. J. ACM 48(4), 723–760 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Goodrich, M.T., Tamassia, R.: Data Structures and Algorithms in Java, 2nd edn. John Wiley & Sons, Chichester (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Charalampos Papamanthou
    • 1
    • 2
  • Ioannis G. Tollis
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of CreteHeraklionGreece
  2. 2.Institute of Computer ScienceFORTH, Vasilika VoutonHeraklionGreece

Personalised recommendations