Dynamic Spectral Layout of Small Worlds

  • Ulrik Brandes
  • Daniel Fleischer
  • Thomas Puppe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


Spectral methods are naturally suited for dynamic graph layout, because moderate changes of a graph yield moderate changes of the layout under weak assumptions. We discuss some general principles for dynamic graph layout and derive a dynamic spectral layout approach for the animation of small-world models.


  1. 1.
    Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sktech-driven orthogonal graph drawing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 1–11. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Brandes, U., Kääb, V., Löh, A., Wagner, D., Willhalm, T.: Dynamic WWW structures in 3D. Journal of Graph Algorithms and Applications 4(3), 103–114 (2000)Google Scholar
  3. 3.
    Brandes, U., Wagner, D.: A Bayesian paradigm for dynamic graph layout. In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 236–247. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bridgeman, S., Tamassia, R.: Difference metrics for interactive orthogonal graph drawing algorithms. Journal of Graph Algorithms and Applications 4(3), 47–74 (2000)MATHMathSciNetGoogle Scholar
  6. 6.
    Demestrescu, C., Di Battista, G., Finocchi, I., Liotta, G., Patrignani, M., Pizzonia, M.: Infinite trees and the future. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 379–391. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Diehl, S., Görg, C., Kerren, A.: Preserving the mental map using forsighted layout. In: Proc. VisSym 2001. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Eades, P., Cohen, R.F., Huang, M.: Online animated graph drawing for web navigation. In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 330–335. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL: Graph animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Erten, C., Kobourov, S.G., Pitta, C.: Intersection-free morphing of planar graphs. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 320–331. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Friedrich, C., Eades, P.: Graph drawing in motion. Journal of Graph Algorithms and Applications 6(3), 353–370 (2002)MATHMathSciNetGoogle Scholar
  12. 12.
    Friedrich, C., Houle, M.E.: Graph drawing in motion II. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 220–231. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Golub, G.H., van Loan, C.F.: Matrix Computations. John Hopkins University Press (1983)Google Scholar
  14. 14.
    Hall, K.M.: An r-dimensional quadratic placement algorithm. Management Science 17(3), 219–229 (1970)MATHCrossRefGoogle Scholar
  15. 15.
    Koren, Y.: Drawing graphs by eigenvectors: Theory and practice. Computers and Mathematics with Applications (2005) (to appear)Google Scholar
  16. 16.
    Koren, Y., Carmel, L., Harel, D.: Drawing huge graphs by algebraic multigrid optimization. Multiscale Modeling and Simulation 1(4), 645–673 (2003)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal of Visual Languages and Computing 6(2), 183–210 (1995)CrossRefGoogle Scholar
  18. 18.
    Rellich, F.: Perturbation Theory of Eigenvalue Problems. Gordon and Breach Science Publishers (1969)Google Scholar
  19. 19.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ulrik Brandes
    • 1
  • Daniel Fleischer
    • 1
  • Thomas Puppe
    • 1
  1. 1.Department of Computer & Information ScienceUniversity of KonstanzGermany

Personalised recommendations