Advertisement

A Hybrid Model for Drawing Dynamic and Evolving Graphs

  • Marco Gaertler
  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

Abstract

Dynamic processes frequently occur in many applications. Visualizations of dynamically evolving data, for example as part of the data analysis, are typically restricted to a cumulative static view or an animation/sequential view. Both methods have their benefits and are often complementary in their use. In this article, we present a hybrid model that combines the two techniques. This is accomplished by 2.5D drawings which are calculated in an incremental way. The method has been evaluated on collaboration networks.

References

  1. 1.
    Baur, M., Brandes, U., Gaertler, M., Wagner, D.: Drawing the as graph in 2.5 dimensions. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 43–48. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Brandes, U., Corman, S.: Visual unrolling of network evolution and the analysis of dynamic discourse. Information Visualization 2(1), 40–50 (2003)CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Cornelsen, S.: Visual ranking of link structures. Journal of Graph Algorithms and Applications 7(2), 181–201 (2003)MATHMathSciNetGoogle Scholar
  4. 4.
    Brandes, U., Dwyer, T., Schreiber, F.: Visual understanding of metabolic pathways across organisms using layout in two and a half dimensions. Journal of Integrative Bioinformatics 0002(2004)Google Scholar
  5. 5.
    Brandes, U., Wagner, D.: A Bayesian paradigma for dynamic graph layout. In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 236–247. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing - Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  8. 8.
    Eades, P., Feng, Q.: Multilevel visualization of clustered graphs. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 113–128. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Eades, P., Lai, W., Misue, K., Sugiyama, K.: Preseving the mental map of a diagramm. In: Proceedings of Compugraphics 1991, pp. 24–33 (1991)Google Scholar
  10. 10.
    Erten, C., Harding, P., Kobourov, S., Wampler, K., Yee, G.: Graphael: Graph animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    North, S.C.: Incremental layout with dynadag. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 409–418. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marco Gaertler
    • 1
  • Dorothea Wagner
    • 1
  1. 1.Faculty of InformaticsUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations