GD 2005: Graph Drawing pp 177-188

# Transversal Structures on Triangulations, with Application to Straight-Line Drawing

• Éric Fusy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

## Abstract

We define and investigate a structure called transversal edge-partition related to triangulations without non empty triangles, which is equivalent to the regular edge labeling discovered by Kant and He. We study other properties of this structure and show that it gives rise to a new straight-line drawing algorithm for triangulations without non empty triangles, and more generally for 4-connected plane graphs with at least 4 border vertices. Taking uniformly at random such a triangulation with 4 border vertices and n vertices, the size of the grid is almost surely $$\frac{11}{27}n \times \frac{11}{27}n$$ up to fluctuations of order $$\sqrt{n}$$, and the half-perimeter is bounded by n–1. The best previously known algorithms for straight-line drawing of such triangulations only guaranteed a grid of size $$(\lceil n/2\rceil - 1)\times \lfloor n/2 \rfloor$$. Hence, in comparison, the grid-size of our algorithm is reduced by a factor $$\frac{5}{27}$$, which can be explained thanks to a new bijection between ternary trees and triangulations of the 4-gon without non empty triangles.

## References

1. 1.
Biedl, T.C., Kant, G., Kaufmann, M.: On triangulating planar graphs under the four-connectivity constraint. Algorithmica 19(4), 427–446 (1997)
2. 2.
Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane graphs. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 60–70. Springer, Heidelberg (2005)
3. 3.
Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., Schaeffer, G.: Planar graphs, via well-orderly maps and trees. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 270–284. Springer, Heidelberg (2004)
4. 4.
de Fraysseix, H., Ossona de Mendez, P., Pach, J.: Representation of planar graphs by segments. Intuitive Geometry 63, 109–117 (1991)Google Scholar
5. 5.
de Fraysseix, H., Ossona de Mendez, P., Rosenstiehl, P.: Bipolar orientations revisited. Discrete Appl. Math. 56(2-3), 157–179 (1995)
6. 6.
de Mendez, P.O.: Orientations bipolaires. PhD thesis, Paris (1994)Google Scholar
7. 7.
Felsner, S.: Lattice structures from planar graphs. Electronic Journal of Combinatorics (R15), 24 (2004)Google Scholar
8. 8.
Fusy, É., Poulalhon, D., Schaeffer, G.: Dissections and trees, with applications to optimal mesh encoding and to random sampling. In: 16th Annual ACM-SIAM Symposium on Discrete Algorithms (January 2005)Google Scholar
9. 9.
He, X.: Grid embedding of 4-connected plane graphs. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 287–299. Springer, Heidelberg (1996)
10. 10.
Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science 172(1-2), 175–193 (1997)
11. 11.
Miura, K., Nakano, S., Nishizeki, T.: Grid drawings of four-connected plane graphs. Disc. Comput. Geometry 26(2), 73–87 (2001)
12. 12.
Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1080–1094. Springer, Heidelberg (2003)
13. 13.
Schaeffer, G.: Conjugaison d’arbres et cartes combinatoires aléatoires. PhD thesis, Université Bordeaux I (1998)Google Scholar
14. 14.
Schaeffer, G.: Random sampling of large planar maps and convex polyhedra. In: Annual ACM Symposium on Theory of Computing, Atlanta, GA, pp. 760–769. ACM, New York (1999) (electronic)Google Scholar
15. 15.
Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)
16. 16.
Schnyder, W.: Embedding planar graphs on the grid. In: SODA 1990: Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pp. 138–148 (1990)Google Scholar
17. 17.
Tutte, W.T.: A census of planar triangulation. Canad. J. Math. 14, 21–38 (1962)