Stress Majorization with Orthogonal Ordering Constraints

  • Tim Dwyer
  • Yehuda Koren
  • Kim Marriott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

Abstract

The adoption of the stress-majorization method from multi-dimensio- nal scaling into graph layout has provided an improved mathematical basis and better convergence properties for so-called “force-directed placement” techniques. In this paper we give an algorithm for augmenting such stress-majorization techniques with orthogonal ordering constraints and we demonstrate several graph-drawing applications where this class of constraints can be very useful.

Keywords

graph layout constrained optimization separation constraints 

References

  1. 1.
    Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)Google Scholar
  2. 2.
    Boisvert, R., Pozo, R., Remington, K., Barrett, R., Dongarra, J.: The Matrix Market: A web resource for test matrix collections. In: Quality of Numerical Software, Assessment and Enhancement, pp. 125–137. Chapman Hall, Boca Raton (1997)Google Scholar
  3. 3.
    Carmel, L., Harel, D., Koren, Y.: Combining Hierarchy and Energy for Drawing Directed Graphs. IEEE Trans. Visualization and Computer Graphics 10, 46–57 (2004)CrossRefGoogle Scholar
  4. 4.
    Dwyer, T., Koren, Y., Marriott, K.: Stress Majorization with Orthogonal Ordering Constraints. Technical Report 2005/175, Monash University School of Computer Science and Software Engineering (2005), Available from: www.csse.monash.edu.au/~tdwyer
  5. 5.
    Dwyer, T., Koren, Y.: Dig-CoLa: Directed Graph Layout through Constrained Energy Minimization. In: IEEE Symposium on Information Visualization, Infovis 2005 (2005) (to appear) Google Scholar
  6. 6.
    Gansner, E., Koren, Y., North, S.: Graph Drawing by Stress Majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    He, W., Marriott, K.: Constrained Graph Layout. Constraints 3, 289–314 (1998)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hong, S., Merrick, D., Nascimento, H.: The metro map layout problem. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 482–491. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kamada, T., Kawai, S.: An Algorithm for Drawing General Undirected Graphs. Information Processing Letters 31, 7–15 (1989)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout Adjustment and the Mental Map. Journal of Visual Languages and Computing 6, 183–210 (1995)CrossRefGoogle Scholar
  11. 11.
    Ryall, K., Marks, J., Shieber, S.M.: An Interactive Constraint-Based System for Drawing Graphs. In: ACM Symposium on User Interface Software and Technology, pp. 97–104 (1997)Google Scholar
  12. 12.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understanding of Hierarchical Systems. IEEE Trans. Systems, Man, and Cybernetics 11, 109–125 (1981)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (1999)MATHCrossRefGoogle Scholar
  14. 14.
    Mosek Optimization Toolkit V3.2, http://www.mosek.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tim Dwyer
    • 1
  • Yehuda Koren
    • 2
  • Kim Marriott
    • 1
  1. 1.School of Comp. Science & Soft. Eng.Monash UniversityAustralia
  2. 2.AT&T — Research 

Personalised recommendations