Skip to main content

Impasse-Driven Reasoning in Proof Planning

  • Conference paper
  • 424 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3863)

Abstract

In a problem solving process, a step may not result in the expected progress or may not be applicable as expected. Hence, knowledge how to overcome and react to impasses and other failures is an important ingredient of successful mathematical problem solving. To employ such knowledge in a proving system requires a variety of behaviors and a flexible control. Multi-strategy proof planning is a knowledge-based theorem proving approach that provides a variety of strategies and knowledge-based guidance for search at different levels. This paper introduces reasoning about impasses as a natural ingredient of meta-reasoning at a strategic level and illustrates the use of knowledge about failure handling in the proof planner multi.

Keywords

  • Theorem Prove
  • Residue Class
  • Control Rule
  • Inductive Proof
  • Automate Theorem

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11618027_10
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-31431-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartle, R.G., Sherbert, D.R.: Introduction to Real Analysis. John Wiley & Sons, New York (1982)

    MATH  Google Scholar 

  2. Bläsius, K.H., Bürckert, H.J. (eds.): Deduktionssysteme, Oldenbourg (1992)

    Google Scholar 

  3. Bledsoe, W.W.: Challenge Problems in Elementary Analysis. Journal of Automated Reasoning 6, 341–359 (1990)

    CrossRef  MATH  Google Scholar 

  4. Bundy, A.: The Use of Explicit Plans to Guide Inductive Proofs. In: Lusk, E.R., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg (1988)

    CrossRef  Google Scholar 

  5. Corkill, D.D., Lesser, V.R., Hudlicka, E.: Unifying Data-Directed and Goal-Directed Control. In: Proceedings of AAAI 1982, pp. 143–147. AAAI Press, Menlo Park (1982)

    Google Scholar 

  6. Durfee, E.H., Lesser, V.R.: Incremental Planning to Control a Blackboard-Based Problem Solver. In: PROC of AAAI 1986, pp. 58–64. AAAI Press, Menlo Park (1986)

    Google Scholar 

  7. Huet, G.P.: Constrained Resolution: A Complete Method for Higher Order Logic. PhD thesis, Case Western Reverse University (1972)

    Google Scholar 

  8. Ireland, A.: The Use of Planning Critics in Mechanizing Inductive Proofs. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 178–189. Springer, Heidelberg (1992)

    CrossRef  Google Scholar 

  9. Ireland, A., Bundy, A.: Productive Use of Failure in Inductive Proof. Journal of Automated Reasoning 16(1-2), 79–111 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Meier, A.: MULTI – Proof Planning with Multiple Strategies. PhD thesis, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken (2004)

    Google Scholar 

  11. Meier, A., Melis, E.: MULTI: A Multi-Strategy Proof Planner. In: Proceedings CADE–20. Springer, Heidelberg (2005)

    Google Scholar 

  12. Meier, A., Pollet, M., Sorge, V.: Comparing Approaches to Explore the Domain of Residue Classes. Journal of Symbolic Computation 34(4), 287–306 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Melis, E., Meier, A.: Proof Planning with Multiple Strategies. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 644–659. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  14. Melis, E., Siekmann, J.: Knowledge-Based Proof Planning. Artificial Intelligence 115(1), 65–105 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Schoenfeld, A.H.: Mathematical Problem Solving. Academic Press, New York (1985)

    MATH  Google Scholar 

  16. Zimmer, J., Melis, E.: Constraint solving for proof planning. Journal of Automated Reasoning (2004) (accepted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meier, A., Melis, E. (2006). Impasse-Driven Reasoning in Proof Planning. In: Kohlhase, M. (eds) Mathematical Knowledge Management. MKM 2005. Lecture Notes in Computer Science(), vol 3863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11618027_10

Download citation

  • DOI: https://doi.org/10.1007/11618027_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31430-1

  • Online ISBN: 978-3-540-31431-8

  • eBook Packages: Computer ScienceComputer Science (R0)