Skip to main content

A Tool for Automated Theorem Proving in Agda

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3839)

Abstract

We present a tool for automated theorem proving in Agda, an implementation of Martin-Löf’s intuitionistic type theory. The tool is intended to facilitate interactive proving by relieving the user from filling in simple but tedious parts of a proof. The proof search is conducted directly in type theory and produces proof terms. Any proof term is verified by the Agda type-checker, which ensures soundness of the tool. Some effort has been spent on trying to produce human readable results, which allows the user to examine the generated proofs. We have tested the tool on examples mainly in the area of (functional) program verification. Most examples we have considered contain induction, and some contain generalisation. The contribution of this work outside the Agda community is to extend the experience of automated proof for intuitionistic type theory.

Keywords

  • Type Theory
  • Logical Framework
  • Meta Variable
  • Proof Assistant
  • Elimination Rule

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Research supported by the project Cover of the Swedish Foundation of Strategic Research (SSF).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11617990_10
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-31429-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, A., Coquand, T., Norell, U.: Connecting a logical framework to a first-order logic prover (2005) (submitted)

    Google Scholar 

  2. Andrews, P.B.: Classical type theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, ch. 15, pp. 965–1007. Elsevier Science, Amsterdam (2001)

    CrossRef  Google Scholar 

  3. Coquand, C.: The AGDA Proof System Homepage (1998), http://www.cs.chalmers.se/~catarina/agda/

  4. Cornes, C.: Conception d’un langage de haut niveau de représentation de preuves: Récurrence par filtrage de motifs, Unification en présence de types inductifs primitifs, Synthèse de lemmes d’inversion. PhD thesis, Université Paris 7 (1997)

    Google Scholar 

  5. Dowek, G.: A complete proof synthesis method for the cube of type systems. J. Logic and Computation 3(3), 287–315 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Dowek, G.: Higher-order unification and matching. In: Robinson, A., Voronkov, A. (eds.) Handbook of automated reasoning, vol. 2, ch. 16, pp. 1009–1062. Elsevier Science, Amsterdam (2001)

    CrossRef  Google Scholar 

  7. Dybjer, P.: Inductive sets and families in martin-löf’s type theory and their set-theoretic semantics. In: Logical frameworks, pp. 280–306. Cambridge University Press, New York (1991)

    CrossRef  Google Scholar 

  8. Lindblad, F.: Agsy problem examples (2004), http://www.cs.chalmers.se/~frelindb/Agsy_examples.tgz

  9. Magnusson, L.: The Implementation of ALF - a Proof Editor based on Martin-Löf’s Monomorphic Type Theory with Explicit Substitution. PhD thesis, Department of Computing Science, Chalmers University of Technology and University of Göteborg (1994)

    Google Scholar 

  10. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Napoli (1984)

    MATH  Google Scholar 

  11. Schürmann, C., Pfenning, F.: Automated theorem proving in a simple meta-logic for LF. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 286–300. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  12. Tammet, T., Smith, J.: Optimized encodings of fragments of type theory in first-order logic. Journal of Logic and Computation 8 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lindblad, F., Benke, M. (2006). A Tool for Automated Theorem Proving in Agda. In: Filliâtre, JC., Paulin-Mohring, C., Werner, B. (eds) Types for Proofs and Programs. TYPES 2004. Lecture Notes in Computer Science, vol 3839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11617990_10

Download citation

  • DOI: https://doi.org/10.1007/11617990_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31428-8

  • Online ISBN: 978-3-540-31429-5

  • eBook Packages: Computer ScienceComputer Science (R0)