Advertisement

A Tool for Automated Theorem Proving in Agda

  • Fredrik Lindblad
  • Marcin Benke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3839)

Abstract

We present a tool for automated theorem proving in Agda, an implementation of Martin-Löf’s intuitionistic type theory. The tool is intended to facilitate interactive proving by relieving the user from filling in simple but tedious parts of a proof. The proof search is conducted directly in type theory and produces proof terms. Any proof term is verified by the Agda type-checker, which ensures soundness of the tool. Some effort has been spent on trying to produce human readable results, which allows the user to examine the generated proofs. We have tested the tool on examples mainly in the area of (functional) program verification. Most examples we have considered contain induction, and some contain generalisation. The contribution of this work outside the Agda community is to extend the experience of automated proof for intuitionistic type theory.

Keywords

Type Theory Logical Framework Meta Variable Proof Assistant Elimination Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, A., Coquand, T., Norell, U.: Connecting a logical framework to a first-order logic prover (2005) (submitted)Google Scholar
  2. 2.
    Andrews, P.B.: Classical type theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, ch. 15, pp. 965–1007. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  3. 3.
    Coquand, C.: The AGDA Proof System Homepage (1998), http://www.cs.chalmers.se/~catarina/agda/
  4. 4.
    Cornes, C.: Conception d’un langage de haut niveau de représentation de preuves: Récurrence par filtrage de motifs, Unification en présence de types inductifs primitifs, Synthèse de lemmes d’inversion. PhD thesis, Université Paris 7 (1997)Google Scholar
  5. 5.
    Dowek, G.: A complete proof synthesis method for the cube of type systems. J. Logic and Computation 3(3), 287–315 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dowek, G.: Higher-order unification and matching. In: Robinson, A., Voronkov, A. (eds.) Handbook of automated reasoning, vol. 2, ch. 16, pp. 1009–1062. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  7. 7.
    Dybjer, P.: Inductive sets and families in martin-löf’s type theory and their set-theoretic semantics. In: Logical frameworks, pp. 280–306. Cambridge University Press, New York (1991)CrossRefGoogle Scholar
  8. 8.
    Lindblad, F.: Agsy problem examples (2004), http://www.cs.chalmers.se/~frelindb/Agsy_examples.tgz
  9. 9.
    Magnusson, L.: The Implementation of ALF - a Proof Editor based on Martin-Löf’s Monomorphic Type Theory with Explicit Substitution. PhD thesis, Department of Computing Science, Chalmers University of Technology and University of Göteborg (1994)Google Scholar
  10. 10.
    Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Napoli (1984)zbMATHGoogle Scholar
  11. 11.
    Schürmann, C., Pfenning, F.: Automated theorem proving in a simple meta-logic for LF. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 286–300. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Tammet, T., Smith, J.: Optimized encodings of fragments of type theory in first-order logic. Journal of Logic and Computation 8 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fredrik Lindblad
    • 1
  • Marcin Benke
    • 1
  1. 1.Department of Computing ScienceChalmers University of Technology/Göteborg UniversityGöteborgSweden

Personalised recommendations