Advertisement

Proving Geometric Theorems by Partitioned-Parametric Gröbner Bases

  • Xuefeng Chen
  • Peng Li
  • Long Lin
  • Dingkang Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3763)

Abstract

The notion of partitioned-parametric Gröbner bases of a polynomial ideal under constraints is introduced and an algorithm for constructing partitioned-parametric Gröbner bases is given; the correctness and the termination of the algorithm are proved. We also present a method based on computing partitioned-parametric Gröbner bases for proving geometric theorems mechanically. By this method, besides proving the generic truth of a geometric theorem, we can give the necessary and sufficient conditions on the free parameters for the theorem to be true. An example for proving geometric theorems by the partitioned-parametric Gröbner bases method is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buchberger, B.: Gröbner Bases: An Algorithmic Method in Polynomial Ideal theorey. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. D. Reidel Publishing Co., Dordrecht (1985)Google Scholar
  2. 2.
    Chen, X.F., Wang, D.K.: The Projection of Quasi Variety and Its Application on Geometric Theorem Proving and Formula Deduction. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 21–30. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Chou, S.-C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Co., Dordrecht (1988)Google Scholar
  4. 4.
    Chou, S.-C., Gao, X.-S.: Methods for Mechanical Geometry Formula Deriving. In: Proc. ISSAC 1990, pp. 265–270. ACM Press, New York (1990)CrossRefGoogle Scholar
  5. 5.
    Cox, D., Little, J., O’Shea, D.: Ideal, Varieties, and Algorithems, 2nd edn. Springer, New York (1997)Google Scholar
  6. 6.
    Kapur, D.: Using Gröbner Bases to Reason About Geometry Problems. J. Symbolic Computation 2(4), 399–408 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kapur, D.: An Approach for Solving Systems of Parametric Polynomial Equations. In: Saraswat, Van Hentenryck (eds.) Principles and Practice of Constraint Programming. MIT Press, Cambridge (1995)Google Scholar
  8. 8.
    Montes, A.: A New Algorithm for Discussing Gröbner Bases with Parameters. J. Symbolic Computatio 33(1-2), 183–208 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Weispfenning, V.: Comprehensive Gröbner Bases. J. Symbolic Computation 14, 1–29 (1991)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Winkler, F.: Gröbner Bases in Geometry Theorem Proving and Simplest Degeneracy Conditions. Mathematica Pannonica 1(1), 15–32 (1990)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Wang, D.: Elimination Methods. Springer, Wien (2001)zbMATHGoogle Scholar
  12. 12.
    Wu, W.-T.: Basic Principles of Mechanical Theorem-proving in Elementary Geometries. J. Sys. Sci. & Math. Scis. 4, 207–235 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xuefeng Chen
    • 1
  • Peng Li
    • 1
  • Long Lin
    • 1
  • Dingkang Wang
    • 1
  1. 1.Key Laboratory of Mathematics Mechanization, Academy of Mathematics and System SciencesChinese Academy of SciencesBeijingP.R. China

Personalised recommendations