Skip to main content

Double Regularized Bayesian Estimation for Blur Identification in Video Sequences

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3852))

Included in the following conference series:

Abstract

Blind blur identification in video sequences becomes more important. This paper presents a new method for identifying parameters of different blur kernels and image restoration in a weighted double regularized Bayesian learning approach. A proposed prior solution space includes dominant blur point spread functions as prior candidates for Bayesian estimation. The double cost functions are adjusted in a new alternating minimization approach which successfully computes the convergence for a number of parameters. The discussion of choosing regularization parameters for both image and blur function is also presented. The algorithm is robust in that it can handle images that are formed in variational environments with different types of blur. Numerical tests show that the proposed algorithm works effectively and efficiently in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tikhonov, A., Arsenin, V.: Solution of Ill-Posed Problems. Wiley, Winston (1977)

    Google Scholar 

  2. Miller, K.: Least-squares method for ill-posed problems with a prescribed bound. SIAM Journal of Math. 1, 52–74 (1970)

    Article  MATH  Google Scholar 

  3. Katsaggelos, A., Biemond, J., Schafer, R., Mersereau, R.: A regularized iterative image restoration algorithm. IEEE Tr. on Signal Processing 39, 914–929 (1991)

    Article  Google Scholar 

  4. Lane, R.: Blind deconvolution of speckle images. J. Opt. Soc. Amer. A 9, 1508–1514 (1992)

    Article  MathSciNet  Google Scholar 

  5. Yang, Y., Galatsanos, N., Stark, H.: Projection based blind deconvolution. Journal Optical Society America 11, 2401–2409 (1994)

    Article  Google Scholar 

  6. You, Y., Kaveh, M.: A regularization approach to joint blur identification and image restoration. IEEE Tr. on Image Processing 5, 416–428 (1996)

    Article  Google Scholar 

  7. Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag., May, 43–64 (1996)

    Google Scholar 

  8. Yap, K., Guan, L., Liu, W.: A recursive soft-decision approach to blind image deconvolution. IEEE Tr. Sig. Pro. 51, 515–526 (2003)

    Article  MathSciNet  Google Scholar 

  9. Duda, R., Hart, P.: Pattern classification, 2nd edn. Wiley Interscience, Hoboken (2000)

    Google Scholar 

  10. Geman, S., Geman, D.: Stochastic relaxation, gibbs distribution and the bayesian restoration of images. IEEE Trans. PAMI 6, 721–741 (1984)

    MATH  Google Scholar 

  11. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  12. Molina, R., Ripley, B.: Using spatial models as priors in astronomical image analysis. J. App. Stat. 16, 193–206 (1989)

    Article  Google Scholar 

  13. Green, P.: Bayesian reconstruction from emission tomography data using a modified em algorithm. IEEE Tr. Med. Imaging 9, 84–92 (1990)

    Article  Google Scholar 

  14. Bouman, C., Sauer, K.: A generalized gaussian image model for edge-preserving map estimation. IEEE Transactions of Image Processing 2, 296–310 (1993)

    Article  Google Scholar 

  15. Molina, R., Katsaggelos, A., Mateos, J.: Bayesian and regularization methods for hyperparameters estimate in image restoration. IEEE Tr. on S.P. 8 (1999)

    Google Scholar 

  16. Chan, T.F., Wong, C.K.: Convergence of the alternating minimization algorithm for blind deconvolution. Linear Algebra Appl. 316, 259–285 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hansen, P., O’Leary, D.: The use of the l-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lagendijk, R., Biemond, J., Boekee, D.: Regularized iterative image restoration with ringing reduction. IEEE Tr. on Ac., Sp., and Sig. Proc. 36, 1874–1888 (1988)

    Article  MATH  Google Scholar 

  19. Banham, M., Katsaggelos, A.: Digital image restoration. IEEE S. P. 14, 24–41 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, H., Hellwich, O. (2006). Double Regularized Bayesian Estimation for Blur Identification in Video Sequences. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_94

Download citation

  • DOI: https://doi.org/10.1007/11612704_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31244-4

  • Online ISBN: 978-3-540-32432-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics