Skip to main content

Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Abstract

This paper describes a novel method for estimating extrinsic camera parameters using both feature points on an image sequence and sparse position data acquired by GPS. Our method is based on a structure-from-motion technique but is enhanced by using GPS data so as to minimize accumulative estimation errors. Moreover, the position data are also used to remove mis-tracked features. The proposed method allows us to estimate extrinsic parameters without accumulative errors even from an extremely long image sequence. The validity of the method is demonstrated through experiments of estimating extrinsic parameters for both synthetic and real outdoor scenes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feiner, S., MacIntyre, B., Höllerer, T., Webster, A.: A touring machine: Prototyping 3D mobile augmented reality systems for exploring the urban environment. In: Proc. 1st IEEE Int. Symp. on Wearable Computers, pp. 208–217 (1997)

    Google Scholar 

  2. Kotake, D., Endo, T., Pighin, F., Katayama, A., Tamura, H., Hirose, M.: Cybercity Walker 2001: Walking through and looking around a realistic cyberspace reconstructed from the physical world. In: Proc. 2nd IEEE and ACM Int. Symp. on Mixed Reality, pp. 205–206 (2001)

    Google Scholar 

  3. Fitzgibbon, A.W., Zisserman, A.: Automatic camera recovery for closed or open image sequences. In: Proc. 5th European Conf. on Computer Vision, vol. I, pp. 311–326 (1998)

    Google Scholar 

  4. Pollefeys, M., Koch, R., Vergauwen, M., Deknuydt, B., Gool, L.V.: Three-dimentional scene reconstruction from images. In: Proc. SPIE, vol. 3958, pp. 215–226 (2000)

    Google Scholar 

  5. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Proc. 9th IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1403–1410 (2003)

    Google Scholar 

  6. Sato, T., Kanbara, M., Yokoya, N., Takemura, H.: Dense 3-D reconstruction of an outdoor scene by hundreds-baseline stereo using a hand-held video csamera. Int. Jour. of Computer Vision 47, 119–129 (2002)

    Article  MATH  Google Scholar 

  7. Comport, A.I., Marchand, É., Chaumette, F.: A real-time tracker for markerless augmented reality. In: Proc. 2nd ACM/IEEE Int. Symp. on Mixed and Augmented Reality, pp. 36–45 (2003)

    Google Scholar 

  8. Vacchetti, L., Lepetit, V., Fua, P.: Combining edge and texture information for real-time accurate 3D camera tracking. In: Proc. 3rd IEEE and ACM Int. Symp. on Mixed and Augmented Reality, pp. 48–57 (2004)

    Google Scholar 

  9. Güven, S., Feiner, S.: Authoring 3D hypermedia for wearable augmented and virtual reality. In: Proc. 7th IEEE Int. Symp. on Wearable Computers, pp. 118–126 (2003)

    Google Scholar 

  10. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 964–971 (2004)

    Google Scholar 

  11. Hu, Z., Keiichi, U., Lu, H., Lamosa, F.: Fusion of vision, 3D gyro and GPS for camera dynamic registration. In: Proc. 17th Int. Conf. on Pattern Recognition, pp. 351–354 (2004)

    Google Scholar 

  12. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. Alvey Vision Conf., pp. 147–151 (1988)

    Google Scholar 

  13. Fischler, M.A., Bolles, R.C.: Random sample consensus: A pradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  14. Tsai, R.Y.: An efficient and accurate camera calibration technique for 3D machine vision. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 364–374 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yokochi, Y., Ikeda, S., Sato, T., Yokoya, N. (2006). Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_38

Download citation

  • DOI: https://doi.org/10.1007/11612032_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics