Skip to main content

nonblocker: Parameterized Algorithmics for minimum dominating set

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3831)

Abstract

We provide parameterized algorithms for nonblocker, the parametric dual of the well known dominating set problem. We exemplify three methodologies for deriving parameterized algorithms that can be used in other circumstances as well, including the (i) use of extremal combinatorics (known results from graph theory) in order to obtain very small kernels, (ii) use of known exact algorithms for the (nonparameterized) minimum dominating set problem, and (iii) use of exponential space. Parameterized by the size k d of the non-blocking set, we obtain an algorithm that runs in time \({\mathcal O}^{*}(1.4123^{k_{d}})\) when allowing exponential space.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11611257_21
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32217-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed Parameter Algorithms for Dominating Set and Related Problems on Planar Graphs. Algorithmica 33, 461–493 (2002)

    MATH  CrossRef  MathSciNet  Google Scholar 

  2. Ausiello, G., Creczenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation; Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  3. Blank, M.: An Estimate of the External Stability Number of a Graph without Suspended Vertices (in Russian). Prikl. Math. i Programmirovanie Vyp 10, 3–11 (1973)

    MathSciNet  Google Scholar 

  4. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric Duality and Kernelization: Lower Bounds and Upper Bounds on Kernel Size. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 269–280. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  6. Fernau, H.: Roman Domination: a Parameterized Perspective. In: Wiedermann, J., et al. (eds.) SOFSEM 2006. LNCS, vol. 3831. Springer, Heidelberg (2006)

    Google Scholar 

  7. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and Conquer: Domination – a Case Study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  8. Fomin, F.V., Grandoni, F., Kratsch, D.: Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms. Technical Report 307, Department of Informatics, University of Bergen (2005)

    Google Scholar 

  9. Fomin, F.V., Thilikos, D.: A Simple and Fast Approach for Solving Problems on Planar Graphs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 56–67. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  12. Hedetniemi, S.T.: A Max-Min Relationship between Matchings and Domination in Graphs. Congressus Numerantium 40, 23–34 (1983)

    MathSciNet  Google Scholar 

  13. Kikuno, T., Yoshida, N., Kakuda, Y.: The NP-Completeness of the Dominating Set Problem in Cubic Planar Graphs. Transactions of the Institute of Electronics and Communication Engineers of Japan E63(6), 443–444 (1980)

    Google Scholar 

  14. Manlove, D.F.: On the Algorithmic Complexity of Twelve Covering and Independence Parameters of Graphs. Discrete Applied Mathematics 91, 155–175 (1999)

    MATH  CrossRef  MathSciNet  Google Scholar 

  15. McCuaig, B., Shepherd, B.: Domination in Graphs of Minimum Degree Two. Journal of Graph Theory 13, 749–762 (1989)

    MATH  CrossRef  MathSciNet  Google Scholar 

  16. Nieminen, J.: Two Bounds for the Domination Number of a Graph. Journal of the Institute of Mathematics and its Applications 14, 183–187 (1974)

    MATH  CrossRef  MathSciNet  Google Scholar 

  17. Ore, O.: Theory of Graphs, Colloquium Publications. American Mathematical Society XXXVIII (1962)

    Google Scholar 

  18. Prieto, E.: Systematic Kernelization in FPT Algorithm Design. PhD thesis, The University of Newcastle, Australia (2005)

    Google Scholar 

  19. Reed, B.: Paths, Stars, and the Number Three. Combinatorics, Probability and Computing 5, 277–295 (1996)

    MATH  CrossRef  MathSciNet  Google Scholar 

  20. Thomassé, S., Yeo, Y.: Total Domination of Graphs and Small Transversals of Hypergraphs. To appear in Combinatorica (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dehne, F., Fellows, M., Fernau, H., Prieto, E., Rosamond, F. (2006). nonblocker: Parameterized Algorithmics for minimum dominating set . In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds) SOFSEM 2006: Theory and Practice of Computer Science. SOFSEM 2006. Lecture Notes in Computer Science, vol 3831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11611257_21

Download citation

  • DOI: https://doi.org/10.1007/11611257_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31198-0

  • Online ISBN: 978-3-540-32217-7

  • eBook Packages: Computer ScienceComputer Science (R0)