Applications Development for the Computational Grid

  • David Abramson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3841)

Abstract

The Computational Grid has promised a great deal in support of innovative applications, particularly in science and engineering. However, developing applications for this highly distributed, and often faulty, infrastructure can be demanding. Often it can take as long to set up a computational experiment as it does to execute it. Clearly we need to be more efficient if the Grid is to deliver useful results to applications scientists and engineers. In this paper I will present a raft of upper middleware services and tools aimed at solving the software engineering challenges in building real applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, D., Lewis, A., Peachey, T., Fletcher, C.: An Automatic Design Optimization Tool and its Application to Computational Fluid Dynamics. In: SuperComputing 2001, Denver (November 2001)Google Scholar
  2. 2.
    Abramson, D., Foster, I., Michalakes, J., Sosic, R.: Relative Debugging: A new paradigm for debugging scientific applications. Communications of the Association for Computing Machinery (CACM) 39(11), 67–77 (1996)Google Scholar
  3. 3.
    Abramson, D., Foster, I., Michalakes, J., Sosic, R.: Relative Debugging and its Application to the Development of Large Numerical Models. In: Proceedings of IEEE Supercomputing 1995, San Diego (December 1995) (Paper on CD)Google Scholar
  4. 4.
    Abramson, D., Sosic, R., Giddy, J., Hall, B.: Nimrod: A Tool for Performing Parametrised Simulations using Distributed Workstations. In: The 4th IEEE Symposium on High Performance Distributed Computing, Virginia (August 1995)Google Scholar
  5. 5.
    Abramson, D., Lewis, A., Peachy, T.: Nimrod/O: A Tool for Automatic Design Optimization. In: The 4th International Conference on Algorithms & Architectures for Parallel Processing (ICA3PP 2000), Hong Kong, December 11 - 13 (2000)Google Scholar
  6. 6.
    Abramson, D., Kommineni, J.: A Flexible IO Scheme for Grid Workflows. In: IPDPS 2004, Santa Fe, New Mexico (April 2004)Google Scholar
  7. 7.
    Abramson, D., Giddy, J., Kotler, L.: High Performance Parametric Modeling with Nimrod/G: Killer Application for the Global Grid? In: International Parallel and Distributed Processing Symposium (IPDPS), Cancun, Mexico, pp. 520–528 (May 2000)Google Scholar
  8. 8.
    Abramson, D., Kommineni, J., Altinas, I.: Flexible IO services in the Kepler Grid Workflow Tool. In: to appear, IEEE Conference on e-Science and Grid Computing, Melbourne (December 2005)Google Scholar
  9. 9.
    Abramson, D., Roe, P., Kotler, L., Mather, D.: ActiveSheets: Super-Computing with Spreadsheets. In: High Performance Computing Symposium (HPC 2001), Advanced Simulation Technologies Conference, Seattle, Washington (USA), April 22-26, pp. 110–115 (2001)Google Scholar
  10. 10.
    Abramson, D., Roe, P., Kotler, L., Mather, D.: ActiveSheets: Super-Computing with Spreadsheets. In: High Performance Computing Symposium (HPC 2001), Advanced Simulation Technologies Conference, Seattle, Washington (USA), April 22-26, pp. 110–115 (2001)Google Scholar
  11. 11.
    Allen, G., Seidel, E.: Collaborative Science: Astrophysics Requirements and Experiences. In: foster, I., Kesselmann, C. (eds.) The Grid: Blueprint for a New Computing Infrastructure, 2nd edn., pp. 201–213 (2004)Google Scholar
  12. 12.
    Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: Towards a Grid-Enabled System for Scientific Workflows. In: the Workflow in Grid Systems Workshop in GGF10 - The 10th Global Grid Forum, Berlin (March 2004)Google Scholar
  13. 13.
    Anderson, P., Scobie, A.: LCFG: The Next Generation. In: UKUUG Winter Conference (2002)Google Scholar
  14. 14.
    Anderson, P., Goldsack, P., Paterson, J.: SmartFrog meets LCFG - Autonomous Reconfiguration with Central Policy Control. In: 2002 Large Installations Systems Admini-stration Conference (2003)Google Scholar
  15. 15.
    Annis, J., Zhao, Y., et al.: Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey. Technical Report GriPhyN-2002-05 (2002)Google Scholar
  16. 16.
  17. 17.
    Berman, et al.: The GrADS Project: Software Support for High-Level Grid Application Development. International Journal of High Performance Computing Applications 15(4), 327–344 (Winter 2001)Google Scholar
  18. 18.
    Bruno, G., Papadopoulos, P., Katz, M.: Npaci rocks: Tools and techniques for easily deploying manageable linux clusters. In: Cluster 2001 (2001)Google Scholar
  19. 19.
    Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: An Architecture of a Resource Management and Scheduling System in a Global Computational Grid. In: HPC Asia 2000, Beijing, China, May 14-17, pp. 283–289 (2000)Google Scholar
  20. 20.
    Buyya, R., Abramson, D., Venugopal, S.: The Grid Economy, Special Issue on Grid Computing. In: Parashar, M., Lee, C. (eds.) Proceedings of the IEEE, vol. 93(3), pp. 698–714. IEEE Press, Los Alamitos (2005)Google Scholar
  21. 21.
    Casanova, H., Berman, F.: Parameter Sweeps on The Grid With APST. In: Berman, F., Fox, G., Hey, T. (eds.), ch. 26, Wiley Publisher, Inc., Chichester (2002)Google Scholar
  22. 22.
    Casanova, H., Dongarra, J.: Netsolve: A Network Server for Solving Computational Science Problems. Supercomputing Applications and High Performance Computing 11(3), 212–223 (1997)CrossRefGoogle Scholar
  23. 23.
    Chervenak, A.L., Palavalli, N., Bharathi, S., Kesselman, C., Schwartzkopf, R.: Performance and Scalability of a Replica Location Service. In: Proceedings of the International IEEE Symposium on High Performance Distributed Computing, HPDC-13 (June 2004)Google Scholar
  24. 24.
    Czajkowski, K., Foster, I., Frey, J., et al.: The WS-Resource Framework, Version 1.0, May 3 (2004), http://www.globus.org/wsrf/
  25. 25.
    Deelman, E., Blackburn, K., et al.: GriPhyN and LIGO, Building a Virtual Data Grid for Gravitational Wave Scientists. In: 11th Intl Symposium on High Performance Distributed Computing (2002)Google Scholar
  26. 26.
    Thain, D., Tannenbaum, T., Livny, M.: Condor and the Grid. In: Berman, F., Hey, A.J.G., Fox, G. (eds.) Grid Computing: Making The Global Infrastructure a Reality. John Wiley, Chichester (2003)Google Scholar
  27. 27.
    Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. International Journal of Supercomputer Applications 11(2), 115–128 (1997)CrossRefGoogle Scholar
  28. 28.
    Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure, 2nd edn., November 18. Morgan Kaufmann, San Francisco (2003) ISBN: 1558609334Google Scholar
  29. 29.
    Goldsack, P., Guijarro, J., Lain, A., et al.: SmartFrog: Configuration and Automatic Ignition of Distributed Applications. In: HP Labs, UK (2003), http://www.hpl.hp.com/research/smartfrog/
  30. 30.
    Goscinski, W., Abramson, D.: Distributed Ant: A System to Support Application Deployment in the Grid. In: Fifth IEEE/ACM International Workshop on Grid Computing (2004)Google Scholar
  31. 31.
  32. 32.
  33. 33.
    Kacsuk, P., Cunha, J.C., Dózsa, G., Lourenco, J., Antao, T., Fadgyas, T.: GRADE: A Graphical Development and Debugging Environment for Parallel Programs. Parallel Computing Journal 22(13), 1747–1770 (1997)MATHCrossRefGoogle Scholar
  34. 34.
    Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations. In: Proceedings of the 8th International Conference on Distributed Computing Systems, San Jose, Calif (June 1988)Google Scholar
  35. 35.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E., Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. In: Concurrency and Computation: Practice & Experience, Special Issue on Scientific Workflows (2005)Google Scholar
  36. 36.
  37. 37.
    Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M., Wipat, A., Li, P.: Taverna: A tool for the composition and enactment of bioinformatics workflows. Bioinformatics Journal 20(17), 3045–3054 (2004) doi:10.1093/bioinformatics/bth361Google Scholar
  38. 38.
    Rajasekar, A., Wan, M., Moore, R., Schroeder, W., Kremenek, G., Jagatheesan, A., Cowart, C., Zhu, B., Chen, S., Olschanowsky, R.: Storage Resource Broker - Managing Distributed Data in a Grid. Computer Society of India Journal, Special Issue on SAN 33(4), 42–54 (2003)Google Scholar
  39. 39.
    Romberg, M.: The UNICORE Architecture–Seamless Access to Distributed Resources. In: Proceedings of the Eight IEEE International Symposium on High Performance Computing, Redondo Beach, CA, USA, pp. 287–293 (August 1999)Google Scholar
  40. 40.
    Southern California Earthquake Center’s Community Modeling. Environment, http://www.scec.org/cme/
  41. 41.
    Stallman, R.: Debugging with GDB – The GNU Source Level Debugger, Edition 4.12, Free Software Foundation (January 1994)Google Scholar
  42. 42.
    Stevens, R., Tipney, H.J., Wroe, C., Oinn, T., Senger, M., Lord, P., Goble, C.A., Brass, A., Tassabehji, M.: Exploring Williams-Beuren Syndrome Using myGrid. In: Proceedings of 12th International Conference on Intelligent Systems in Molecular Biology, Glasgow, UK, July 31-August 4, vol. 20(Suppl. 1), pp. 303–310 (2004) (published Bioinformatics)Google Scholar
  43. 43.
    Sudholt, W., Baldridge, K., Abramson, D., Enticott, C., Garic, S.: Parameter Scan of an Effective Group Difference Pseudopotential Using Grid Computing. New Generation Computing 22, 125–135 (2004)CrossRefGoogle Scholar
  44. 44.
    Sudholt, W., Baldridge, K., Abramson, D., Enticott, C., Garic, S.: Application of Grid computing to parameter sweeps and optimizations in molecular modeling. Future Generation Computer Systems 21, 27–35 (2005)CrossRefGoogle Scholar
  45. 45.
    Tan, J., Abramson, D., Enticott, C.: Bridging Organizational Network Boundaries on the Grid. In: IEEE Grid 2005, Seattle (November 2005)Google Scholar
  46. 46.
    Tanaka, Y., Takemiya, H., Nakada, H., Sekiguchi, S.: Design, implementation and performance evaluation of GridRPC programming middleware for a large-scale computational grid. In: Fifth IEEE/ACS International Workshop on Grid Computing, pp. 298–305 (2005)Google Scholar
  47. 47.
    Taylor, I., Wang, I., Shields, M., Majithia, S.: Distributed computing with Triana on the Grid. Concurrency and Computation:Practice and Experience 17(1-18) (2005)Google Scholar
  48. 48.
    von Laszewski, G., Alunkal, B., Amin, K., Hampton, S., Nijsure, S.: GridAnt-Client-side Workflow Management with Ant (2002), http://wwwunix.globus.org/cog/projects/gridant/
  49. 49.
    Watson, G., Abramson, D.: The Architecture of a Parallel Relative Debugger. In: 13th International Conference on Parallel and Distributed Computing Systems - PDCS 2000, August 8 - 10 (2000)Google Scholar
  50. 50.
    Yarrow, M., McCann, K., Biswas, R., Van der Wijngaart, R.: An Advanced User Interface Approach for Complex Parameter Study Process Specification on the Information Power Grid. In: Proceedings of the 1st Workshop on Grid Computing (GRID 2002), Bangalore, India (December 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Abramson
    • 1
  1. 1.Faculty of Information TechnologyMonash UniversityClaytonAustralia

Personalised recommendations