Hand Geometry Based Recognition with a MLP Classifier

  • Marcos Faundez-Zanuy
  • Miguel A. Ferrer-Ballester
  • Carlos M. Travieso-González
  • Virginia Espinosa-Duro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3832)

Abstract

This paper presents a biometric recognition system based on hand geometry. We describe a database specially collected for research purposes, which consists of 50 people and 10 different acquisitions of the right hand. This database can be freely downloaded. In addition, we describe a feature extraction procedure and we obtain experimental results using different classification strategies based on Multi Layer Perceptrons (MLP). We have evaluated identification rates and Detection Cost Function (DCF) values for verification applications. Experimental results reveal up to 100% identification and 0% DCF.

Keywords

Mean Square Error Multi Layer Perceptrons Mean Absolute Difference Biometric System IEEE Aerospace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jain, A.K., Bolle, R., Pankanti, S.: Introduction to biometrics. In: Biometrics Personal identification in networked society, Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  2. 2.
    Faundez-Zanuy, M.: Door-opening system using a low-cost fingerprint scanner and a PC. IEEE Aerospace and Electronic Systems Magazine 19(8), 23–26 (2004)CrossRefGoogle Scholar
  3. 3.
    Faundez-Zanuy, M., Fabregas, J.: Testing report of a fingerprint-based door-opening system. IEEE Aerospace and Electronic Systems Magazine 20(6), 18–20 (2005)CrossRefGoogle Scholar
  4. 4.
    Faundez-Zanuy, M.: On the vulnerability of biometric security systems. IEEE Aerospace and Electronic Systems Magazine 19(6), 3–8 (2004)CrossRefGoogle Scholar
  5. 5.
    Faundez-Zanuy, M.: Data fusion in biometrics. IEEE Aerospace and Electronic Systems Magazine 20(1), 34–38 (2005)CrossRefGoogle Scholar
  6. 6.
    Faundez-Zanuy, M.: Biometric recognition: why not massively adopted yet? IEEE Aerospace and Electronic Systems Magazine 20(9), 1–4 (2005)CrossRefGoogle Scholar
  7. 7.
    Faundez-Zanuy, M.: Privacy issues on biometric systems. IEEE Aerospace and Electronic Systems Magazine 10(2), 13–15 (2005)Google Scholar
  8. 8.
    Travieso-González, C.M., Alonso, J.B., David, S., Ferrer-Ballester, M.A.: Optimization of a biometric system identification by hand geometry. In: Complex systems intelligence and modern technological applications, Cherbourg, France, September 19-22, pp. 581–586 (2004)Google Scholar
  9. 9.
    O’Gorman, L., Kasturi, R.: Document Image Analysis. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  10. 10.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision, 2nd edn., September 30 (1998)Google Scholar
  11. 11.
    Martin, A., et al.: The DET curve in assessment of detection performance. In: European speech Processing Conference Eurospeech, vol. 4, pp. 1895–1898 (1997)Google Scholar
  12. 12.
    Haykin, S.: Neural nets. A comprehensive foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1999)Google Scholar
  13. 13.
    Wicker, Stephen, B.: Error Control Systems for Digital Communication and Storage, Upper Saddle River, N.J. Prentice Hall, Englewood Cliffs (1995)Google Scholar
  14. 14.
    Dietterich, T.G., Bakiri, G.: Error-correcting output codes: A general method for improving multiclass inductive learning programs. In: Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI 1991), Anaheim, CA. AAAI Press, Menlo Park (1991)Google Scholar
  15. 15.
    Dietterich, T.: Do Hidden Units Implement Error-Correcting Codes? Technical report (1991)Google Scholar
  16. 16.
    Kuncheva, L.I.: Combining pattern classifiers, Ed. John Wiley & Sons, Chichester (2004)MATHCrossRefGoogle Scholar
  17. 17.
    YingLiang, M., Pollick, F., Hewitt, W.T.: Using B-spline curves for hand recognition. In: Proceedings of the 17th International Conference on Pattern Recognition, Auguest, vol. 3, pp. 274–277 (2004)Google Scholar
  18. 18.
    Sanchez-Reillo, R., Sanchez-Avila, C., Gonzalez-Marcos, A.: Biometric Identification Through Hand Geometry Measurements. IEEE Transactions on Pattern Analysis an Machine Intelligence 22(10), 1168–1171 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marcos Faundez-Zanuy
    • 1
  • Miguel A. Ferrer-Ballester
    • 2
  • Carlos M. Travieso-González
    • 2
  • Virginia Espinosa-Duro
    • 1
  1. 1.Escola Universitària Politècnica de Mataró (UPC)BarcelonaSpain
  2. 2.Dpto. de Señales y ComunicacionesUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations