Advertisement

Identity Verification Through Palm Vein and Crease Texture

  • Kar-Ann Toh
  • How-Lung Eng
  • Yuen-Siong Choo
  • Yoon-Leon Cha
  • Wei-Yun Yau
  • Kay-Soon Low
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3832)

Abstract

In this paper, an identity verification framework which combines pattern information from the palm-vein and the palm-crease texture is proposed. Main feature of this system is the use of a low cost Near-Infra-Red (NIR) camera instead of the more expensive infra-red thermal camera for palm image capture. Our preliminary experiments show that useful information from palm-vein and palm-crease texture can be effectively extracted for identity verification using a simple setup to contain the camera.

Keywords

Biometrics Multimodal Biometrics Palm-vein Recognition Palm-print Recognition and Pattern Classification 

References

  1. 1.
    Rice, A.J.: A quality approach to biometric imaging. Proceedings of Image Processing for Biometric Measurement IEE Colloquium 4/1–4/5 (1994)Google Scholar
  2. 2.
    Duta, N., Jain, A.K., Mardia, K.V.: Matching of palmprints. Pattern Recognition Letters 23(4), 477–485 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Zhang, D., Kong, W.-K., You, J., Wong, M.: Online palmprint identification. IEEE Trans. Pattern Analysis and Machine Intelligence 25(9), 1041–1050 (2003)CrossRefGoogle Scholar
  4. 4.
    Zhang, L., Zhang, D.: Characterization of palmprints by wavelet signatures via directional context modeling. IEEE Trans. Systems, Man and Cybernetics, Part-B 34(3), 1335–1347 (2004)CrossRefGoogle Scholar
  5. 5.
    Kumar, A., Wong, D.C.M., Shen, H.C., Jain, A.K.: Personal verification using palmprint and hand geometry bionetric. In: Proc. 4th International Conference on Audio- and Video-Based Person Authentication (AVBPA), Guildford, UK, June 2003, pp. 668–678 (2003)Google Scholar
  6. 6.
    Cross, J.M., Smith, C.L.: Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification. In: IEEE 29th Annual International Carnahan Conference on Security Technology, October, pp. 20–35 (1995)Google Scholar
  7. 7.
    Lin, C.-L., Fan, K.-C.: Biometric verification using thermal images of palm-dorsa vein patterns. IEEE Trans. Circuits and Systems for Video Technology 14(2), 199–213 (2004)CrossRefGoogle Scholar
  8. 8.
    JAI Camera Solutions, Near IR industrial CCD camera (datasheet) (2005), http://www.jai.com/db_datasheet/cvm50irdb.pdf
  9. 9.
    Hong, L., Jain, A.: Integrating faces and fingerprints for person identification. IEEE Trans. Pattern Analysis and Machine Intelligence 20(12), 1295–1307 (1998)CrossRefGoogle Scholar
  10. 10.
    Ma, J., Zhao, Y., Ahalt, S.: OSU SVM classifier matlab toolbox, ver 3.00 (2002), http://eewww.eng.ohio-state.edu/~maj/osu_svm/ (the Ohio State University)
  11. 11.
    Toh, K.-A., Tran, Q.-L., Srinivasan, D.: Benchmarking a reduced multivariate polynomial pattern classifier. IEEE Trans. Pattern Analysis and Machine Intelligence 26(6), 740–755 (2004)CrossRefGoogle Scholar
  12. 12.
    Toh, K.-A., Yau, W.-Y.: Combination of hyperbolic functions for multimodal biometrics data fusion. IEEE Trans. Systems, Man and Cybernetics, Part-B 34(2), 1196–1209 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kar-Ann Toh
    • 1
  • How-Lung Eng
    • 1
  • Yuen-Siong Choo
    • 2
  • Yoon-Leon Cha
    • 2
  • Wei-Yun Yau
    • 1
  • Kay-Soon Low
    • 2
  1. 1.Institute for Infocomm ResearchSingapore
  2. 2.School of Electrical & Electronic EngineeringNanyang Technological UniversitySingapore

Personalised recommendations