Generation of Replaceable Cryptographic Keys from Dynamic Handwritten Signatures

  • W. K. Yip
  • A. Goh
  • David Chek Ling Ngo
  • Andrew Beng Jin Teoh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3832)

Abstract

In this paper, we present a method for generating cryptographic keys that can be replaced if the keys are compromised and without requiring a template signature to be stored. The replaceability of keys is accomplished using iterative inner product of Goh-Ngo [1] Biohash method, which has the effect of re-projecting the biometric into another subspace defined by user token. We also utilized a modified Chang et al [2] Multi-state Discretization (MSD) method to translate the inner products into binary bit-strings. Our experiments indicate encouraging result especially for skilled and random forgery whereby the equal error rates are <6.7% and ~0% respectively, indicating that the keys generated are sufficiently distinguishable from impostor keys.

Keywords

Dynamic Time Warping Equal Error Rate Biometric Feature Random Subspace Signature Verification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Goh, A., Ngo, D.C.L.: Computation of Cryptographic Keys from Face Biometrics. In: Lioy, A., Mazzocchi, D. (eds.) CMS 2003. LNCS, vol. 2828, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Chang, Y.C., Zhang, W., Chen, T.: Biometric-based Cryptographic Key Generation. In: IEEE Conference on Multimedia and Expo, Taiwan (2004)Google Scholar
  3. 3.
    Vielhauer, C., Steinmetz, R., Mayerhorf, A.: Biometric Hash based on Statistical Fea-tures of Online Signatures. In: Proc. of the 16th Intl. Conference on Pattern Recognition (2002)Google Scholar
  4. 4.
    Feng, H., Chan, C.W.: Private Key Generation from On-line Handwritten Signatures. Information Management and Computer Security, MCB UP Limited, 159–164 (2000)Google Scholar
  5. 5.
    Davida, G., Frankel, Y., Matt, B.J., Peralta, R.: On the Relation of Error Correction and Cryptography to an Off Line Biometric Based on Identification Scheme. In: WCC 1999, Workshop on Coding and Cryptography (1999)Google Scholar
  6. 6.
    Soutar, C., Roberge, D., Stoianov, A., Gilroy, R., Kumar, B.V.K.V.: Biometric Encryption Using Image Processing. SPIE 3314, 178–188 (1998)Google Scholar
  7. 7.
    Monrose, F., Reiter, M.K., Li, Q., Wetzel, S.: Cryptographic Key Generation from Voice. In: Proc. of the 2001 IEEE Symp. on Security and Privacy (2001)Google Scholar
  8. 8.
    Monrose, F., Reiter, M.K., Li, Q., Lopresti, D.P., Shih, C.: Toward Speech-Generated Cryptographic Keys on Resource Constrained Devices. In: Proc. of the 11th USENIX Security Symposium (2002)Google Scholar
  9. 9.
    Juels, A., Wattenberg, M.: A Fuzzy Commitment Scheme. In: Tsudik, G. (ed.) Proc. 6th ACM Conf. Computer and Communications Security, pp. 28–36 (1999)Google Scholar
  10. 10.
    Juels, A., Sudan, M.: A Fuzzy Vault Scheme. In: Lapidoth, A., Teletar, E. (eds.) Proc. IEEE Int. Symp. Information Theory, p. 408 (2002)Google Scholar
  11. 11.
    Clancy, T.C., Kiyavash, N., Lin, D.J.: Secure Smartcard-based Fingerprint Authentication. In: Proc. ACM SIGMM 2993 Multimedia, Biometrics Methods and Applications Workshop, 45–52 (2003)Google Scholar
  12. 12.
    Boyen, X.: Reusable Cryptographic Fuzzy Extractors. In: 11th ACM Conference on Computer and Communications Security (CCS 2004), pp. 82–91. ACM Press, New York (2004)CrossRefGoogle Scholar
  13. 13.
    Sakoe, H., Chiba, S.: Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Trans. on Acoustics, Speech & Signal Processing ASSP-26(1) (1978)Google Scholar
  14. 14.
    Hastie, T., Kishon, E.: A model for Signature Verification, AT&T Bell Laboratories Technical Report (1992)Google Scholar
  15. 15.
    Kholmatov, A.A.: Biometry Identity Verification Using On-line and Off-line Signature Verification, Master of Science Thesis, Sabanci University (2003)Google Scholar
  16. 16.
    Plamondon, R., Srihari, S.: On-line and Off-line Handwriting Recognition: A Compre-hensive Survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(1) (2000)Google Scholar
  17. 17.
    Feng, H., Chan, C.W.: Online Signature Verification using a New Extreme Points Warping Technique. Pattern Recognition Letters 24, 2943–2951 (2003)CrossRefGoogle Scholar
  18. 18.
    Martinez, J.C.R., Lopez, J.J.V., Rosas, F.J.L.: A Low-cost System for Signature Recognition. In: Int. Congress on Research in Electrical and Electronics Engineering (2002)Google Scholar
  19. 19.
    Chan, F.L., Kamins, D.: Signature Recognition through Spectral Analysis. Pattern Recognition 22(1), 39–44 (1989)CrossRefGoogle Scholar
  20. 20.
    SVC 2004: First International Signature Verification Competition (2004), http://www.cs.ust.hk/svc2004/

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • W. K. Yip
    • 1
    • 2
  • A. Goh
    • 2
  • David Chek Ling Ngo
    • 1
    • 2
  • Andrew Beng Jin Teoh
    • 1
    • 2
  1. 1.Faculty of Information Science and Technology (FIST)Multimedia UniversityBukit BeruangMalaysia
  2. 2.Corentix Technologies Sdn BhdPetaling JayaMalaysia

Personalised recommendations