Advertisement

Towards Understanding Meme Media Knowledge Evolution

  • Roland Kaschek
  • Klaus P. Jantke
  • István-Tibor Nébel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3847)

Abstract

Successful communication involves the individual utterances being interpreted within a suitable context. Systems that fail to acquire and share the context required for some topic are likely to fail to communicate successfully about that topic. Software systems populating an open medium such as the Web are unlikely to have been designed or otherwise prepared to communicate with each other, so if they are to communicate they face this challenge of acquiring and sharing the necessary context. We consider this situation for software systems implemented as meme media objects that contain representations of human knowledge. The mentioned acquisition can be understood as an enhancement of the knowledge representation they contain. Thus we consider establishing successful communication among meme media objects on the Web as an instance of knowledge evolution. The paper provides a conceptual framework for studying knowledge evolution. That framework is based on a particular interpretation of the concept of model. We give an example of use of the framework in an e-learning case study within a medical context.

Keywords

Entity Type Relationship Type Knowledge Evolution Relation Symbol Wicked Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, O.: Die Therapiesteuerungskomponente einer wissensbasierten Systemarchitektur für Aufgaben der Prozes̈führung. DISKI. infix, vol. 130 (1996)Google Scholar
  2. 2.
    Austin, J.L.: Zur Theorie der Sprechakte. Philip Reclam jun., Stuttgart (1979)Google Scholar
  3. 3.
    Ahituv, N., Neumann, S.: Principles of Information Systems for Management., 3rd edn. Wm. C. Brown Publishers, Dubuque (1990)Google Scholar
  4. 4.
    Batini, C., Ceri, S., Navathe, S.: Conceptual Database De-sign. The Benjamin / Cummings Publishing Company; Inc., Redwood City (1992)Google Scholar
  5. 5.
    Blackmore, S.: The Meme Machine. Oxford University Press, Oxford (1999)Google Scholar
  6. 6.
    Blaha, M., Premerlani, W.: Object-Oriented Modeling and Design for Database Applications. Prentice-Hall, Inc., Upper Saddle River (1998)Google Scholar
  7. 7.
    Bramer, M.A. (ed.): Knowledge Discovery and Data Mining. IEE Professional Applications of Computing Series 1. The Institution of Electrical Engineers (1999)Google Scholar
  8. 8.
    Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall, New York (1990)zbMATHGoogle Scholar
  9. 9.
    Cragan, J.F., Shields, D.C.: Understanding Communication Theory: The Communicative Forces for Human Action. Allyn and Bacon, Boston et al. (1998)Google Scholar
  10. 10.
    Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)Google Scholar
  11. 11.
    Dötsch, V., Ito, K., Jantke, K.P.: Human-agent cooperation in accessing and communicating knowledge media? A case in medical therapy planning. In: Grieser, G., Tanaka, Y. (eds.) Dagstuhl Seminar 2004. LNCS (LNAI), vol. 3359, pp. 68–87. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Esposito, F., Licchelli, O., Semeraro, G.: Discovering Student Models in e-learning Systems. Journal of Universal Computer Science 10(1), 47–57 (2004)Google Scholar
  13. 13.
    Grieser, G., Jantke, K.P., Lange, S.: Consistency Queries in Information Extraction. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 173–187. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Hirschheim, R., Klein, H.K., Lyytinen, K.: Information Systems Development and Data Modeling, Conceptual and Philosophical Foundations. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  15. 15.
    Hofstädter, D.R.: Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books (1979)Google Scholar
  16. 16.
    Huet, G., Oppen, D.C.: Equations and Rewrite Rules: A Survey. In: Book, R.V. (ed.) Formal Language Theory: Perspectives and Open Problems, pp. 349–405. Academic, New York (1980)Google Scholar
  17. 17.
    Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn. The MIT Press, Cambridge (1999)Google Scholar
  18. 18.
    Jantke, K.P.: The biotope issue in meme media implementations. In: Grieser, G., Tanaka, Y. (eds.) Dagstuhl Seminar 2004. LNCS (LNAI), vol. 3359, pp. 99–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Jantke, K.P.: Inductive modeling: a roadmap. Technical Report, Forschungsinstitut für Informations Technologien Leipzig e.V., Forschungsbericht 2005-02 (January 2005)Google Scholar
  20. 20.
    Jantke, K.P.: Principles, potentials and problems of inductive reasoning in meme media technology applications (invited keynote). In: Tanaka, Y. (ed.) Proc. 2nd International Symposium on Ubiquitous Knowledge Network Environment, Sapporo Convention Center, Sapporo, Japan, March 16 - 18, pp. 29–43. Hokkaido University Sapporo, Japan (2005)Google Scholar
  21. 21.
    Jantke, K.P., Lamonova, N.: Assistance and induction? the therapy planning case. In: Hartmann, S., Kaschek, R., Kinshuk, Schewe, K.-D., Turull Torres, J.M., Whiddett, R. (eds.) First International Workshop on Perspectives of Intelligent Systems? Assistance, PISA 2005, Palmerston North, New Zealand, March 3 - 5, pp. 72–85. Massey University, Dept. of Information Systems (2005)Google Scholar
  22. 22.
    Kaschek, R.: Modeling ontology use for information systems. In: Althoff, K.-D., Dengel, A.R., Bergmann, R., Nick, M., Roth-Berghofer, T.R. (eds.) WM 2005. LNCS (LNAI), vol. 3782, pp. 609–622. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Kamlah, W., Lorenzen, P.: Logische Propädeutik: Vorschule des vernünftigen Redens. Verlag J. B. Metzler, Stuttgart, Weimar (1996)Google Scholar
  24. 24.
    Klösgen, W., Zytkow, J.M. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  25. 25.
    Koster, R.: A Theory of Fun for Game Design. Paraglyph Press, Inc., Scottsdale (2005)Google Scholar
  26. 26.
    Lamonova, N., Ito, K., Tanaka, Y.: From planning tools to intelligent assistants: Meme Media and logic programming technologies. In: Hartmann, S., Kaschek, R., Kinshuk, Schewe, K.-D., Turull Torres, J.M., Whiddett, R. (eds.) First International Workshop on Perspectives of Intelligent Systems? Assistance, PISA 2005, Palmerston North, New Zealand, March 3 - 5, pp. 143–152. Massey University, Dept. of Information Systems (2005)Google Scholar
  27. 27.
    Linke, A., Nussbaumer, M., Portmann, P.R.: Transscript Linguistics (In German). Max Niemeyer Verlag, Tübingen, 4th. unchanged edition (2001)Google Scholar
  28. 28.
    Nebel, I.-T.: Patient and learner adaptation in technology enhanced learning by induction based on medical context. Technical report, Forschungsinstitut für Informations Technologien Leipzig e.V., Forschungsbericht 2004 - 02 (December 2004)Google Scholar
  29. 29.
    Nebel, I.-T.: From planning tools to intelligen tassistants: Meme Media and logic programming technologies. In: Hartmann, S., Kaschek, R., Kinshuk, Schewe, K.-D., Turull Torres, J.M., Whiddett, R. (eds.) First International Workshop on Perspectives of Intelligent Systems’ Assistance, PISA 2005, Palmerston North, New Zealand, March 3 - 5, pp. 176–186. Massey University, Dept. of Information Systems (2005)Google Scholar
  30. 30.
    Pfänder, A.: Logik. Verlag von Max Niemeyer, Halle a.d. Saale (1921)Google Scholar
  31. 31.
    Polya, G.: How to Solve It. Princeton University Press, Princeton (1988)zbMATHGoogle Scholar
  32. 32.
    Reddy, M.J.: The conduit metaphor: A case of frame conflict in our language about language. In: Ortony, A. (ed.) Metaphor and Thought, 4th. printing of second edition of 1992. Cambridge University Press, Cambridge (1998)Google Scholar
  33. 33.
    Stachowiak, H.: Allgemeine Modelltheorie. Springer, Heidelberg (1973)Google Scholar
  34. 34.
    Stachowiak, H.: Erkenntnisstufen zum Systematischen Neopragmatismus und zur Allgemeinen Modelltheorie. In: Stachowiak, H. (ed.) Modelle: Konstruktionen der Wirklichkeit, pp. 87–146. Wilhelm Fink Verlag, München (1983)Google Scholar
  35. 35.
    Stachowiak, H.: Modell. In: Seiffert, H., Radnitzky, G. (eds.) Handlexikon zur Wissenschaftstheorie, pp. 219–222. Deutscher Taschenbuch Verlag GmbH&Co. KG, München (1992)Google Scholar
  36. 36.
    Stefik, M.: The next knowledge medium. AI Magazine 7(1), 34–46 (1986)Google Scholar
  37. 37.
    Tanaka, Y.: Meme Media and Meme Market Architectures. IEEE Press and Wiley-Interscience, Los Alamitos (2003)CrossRefGoogle Scholar
  38. 38.
    Thalheim, B.: Entity-Relationship Modeling. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  39. 39.
    Tsoukas, H.: Do we really understand tacit knowledge? (August 31, 2005), Retrieved from, http://www.is.lse.ac.uk/events/esrcseminars/tsoukas.pdf
  40. 40.
    Trunz, E. (ed.): Goethe. Faust. C. H.Beck (1996)Google Scholar
  41. 41.
    Wieringa, R.: Algebraic foundations for dynamic conceptual models. PhD thesis, Free University of Amsterdam, Amsterdam, The Netherlands, Mai (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roland Kaschek
    • 1
  • Klaus P. Jantke
    • 2
    • 3
  • István-Tibor Nébel
    • 4
  1. 1.Department of Information SystemsMassey UniversityPalmerston NorthNew Zealand
  2. 2.FIT Leipzig, Forschungsinstitut für InformationsTechnologienLeipzigGermany
  3. 3.Meme Media LaboratoryHokkaido University SapporoSapporoJapan
  4. 4.Universität Leipzig, AG Medizinische Lern- und InformationssystemeLeipzigGermany

Personalised recommendations