Skip to main content

Faster Dynamic Algorithms for Chordal Graphs, and an Application to Phylogeny

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3787))

Included in the following conference series:

Abstract

We improve the current complexities for maintaining a chordal graph by starting with an empty graph and repeatedly adding or deleting edges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia, USA (1999)

    Google Scholar 

  2. Berry, A., Sigayret, A., Sinoquet, C.: Maximal Sub-Triangulation as Improving Phylogenetic Data. In: Govaert, G., Haenle, R., Nadif, M. (eds.) Proceedings of JIM 2003. Soft Computing – Recent Advances in Knowledge Discovery, vol. 1900(01) (2005)

    Google Scholar 

  3. Buneman, P.: A characterization of rigid circuit graphs. Discrete Mathematics 9, 205–212 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. Coppersmith, D., Winograd, S.: On the Asymptotic Complexity of Matrix Multiplication. SIAM J. Comput. 11(3), 472–492 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gàvril, F.: The intersection graphs of subtrees of trees are exactly the chordal graphs. Journal of Combinatorial Theory B 16, 47–56 (1974)

    Article  MATH  Google Scholar 

  6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  7. Huson, D., Nettles, S., Warnow, T.: Obtaining highly accurate topology estimates of evolutionary trees from very short sequences. In: Proc. RECOMB 1999, Lyon, France, pp. 198–207 (1999)

    Google Scholar 

  8. Ibarra, L.: Fully Dynamic Algorithms for Chordal and Split Graphs. In: Proc. 10th Annual ACM-SIAM Synposium on Discrete Algorithms SODA 1999, pp. 923–924 (1999)

    Google Scholar 

  9. Kearney, P., Hayward, R., Meijer, H.: Inferring evolutionary trees from ordinal data. In: Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms SODA 1997, pp. 418–426 (1997)

    Google Scholar 

  10. Spinrad, J.P.: Efficient Graph Representation. Fields Institute Monographs 19, 324p. American Mathematics Society, Providence (2003)

    Google Scholar 

  11. Spinrad, J., Sritharan, R.: Algorithms for Weakly Triangulated Graphs. Discrete Applied Mathematics 59, 181–191 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Walter, J.R.: Representations of Rigid Circuit Graphs. PhD. Dissertation, Wayne State University, Detroit, USA (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berry, A., Sigayret, A., Spinrad, J. (2005). Faster Dynamic Algorithms for Chordal Graphs, and an Application to Phylogeny. In: Kratsch, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2005. Lecture Notes in Computer Science, vol 3787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11604686_39

Download citation

  • DOI: https://doi.org/10.1007/11604686_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31000-6

  • Online ISBN: 978-3-540-31468-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics