Advertisement

ISAAC 2005: Algorithms and Computation pp 859-868

# On the Computation of Colored Domino Tilings of Simple and Non-simple Orthogonal Polygons

• Chris Worman
• Boting Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3827)

## Abstract

We explore the complexity of computing tilings of orthogonal polygons using colored dominoes. A colored domino is a rotatable 2 × 1 rectangle that is partitioned into two unit squares, which are called faces, each of which is assigned a color. In a colored domino tiling of an orthogonal polygon P, a set of dominoes completely covers P such that no dominoes overlap and so that adjacent faces have the same color. We describe an O(n) time algorithm for computing a colored domino tiling of a simple orthogonal polygon, where n is the number of dominoes used in the tiling. We also show that deciding whether or not a non-simple orthogonal polygon can be tiled with colored dominoes is NP-complete.

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Adleman, L., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly of infinite ribbons. In: Proceedings of FOCS 2002, IEEE Symposium on Foundations of Computer Science, pp. 530–537 (2002)Google Scholar
2. 2.
Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)
3. 3.
Biedl, T.: The complexity of domino tiling. In: Canadian Conference on Computational Geometry (CCCG 2005), pp. 187–190 (2005)Google Scholar
4. 4.
Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. Theory Appl. 9(3), 159–180 (1998)
5. 5.
Cohen, M.F., Shade, J., Hiller, S., Deussen, O.: Wang tiles for image and texture generation. ACM Trans. Graph. 22(3), 287–294 (2003)
6. 6.
Csizmadia, G., Czyzowicz, J., Gasieniec, L., Kranakis, F., Urrutia, J.: Domino tilings of orthogonal polygons. In: Canadian Conference on Computational Geometry (CCCG 1999), pp. 154–157 (1999)Google Scholar
7. 7.
Culik, K.: An aperiodic tiling of 13 wang tiles. Discrete Math. 160, 245–251 (1996)
8. 8.
Czyzowicz, J., Kranakis, E., Urrutia, J.: Domino tilings and two-by-two squares. In: Canadian Conference on Computational Geometry, CCCG 1997 (1997)Google Scholar
9. 9.
Hiller, S., Deussen, O., Keller, A.: Tiled blue noise samples. In: VMV 2001: Proceedings of the Vision Modeling and Visualization Conference 2001, pp. 265–272. Aka GmbH (2001)Google Scholar
10. 10.
Jansen, K., Müller, H.: The minimum broadcast time problem for several processor networks. Theoretical Computer Science 147(1–2), 69–85 (1995)
11. 11.
Kari, J.: Infinite snake tiling problems. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 67–77. Springer, Heidelberg (2003)
12. 12.
Kenyon, C., Kenyon, R.: Tiling a polygon with rectangles. In: 33rd Fundamentals of Computer Science (FOCS), pp. 610–619 (1992)Google Scholar
13. 13.
Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)
14. 14.
Elkies, M.L.N., Kuperberg, G., Propp, J.: Alternating sign matrices and domino tilings, part 1. Journal of Algebraic Combinatorics 1, 111–132 (1992)
15. 15.
Elkies, M.L.N., Kuperberg, G., Propp, J.: Alternating sign matrices and domino tilings, part 2. Journal of Algebraic Combinatorics 1, 219–234 (1992)
16. 16.
Propp, J.: A reciprocity theorem for domino tilings. The Electronic Journal of Combinatorics 8 (2001)Google Scholar
17. 17.
Wang, H.: Proving theorems by pattern recognition. Bell Systems Technical Journal (40), 1–41 (1961)Google Scholar
18. 18.
Worman, C., Watson, M.: Tiling layouts with dominoes. In: Proceedings of the 16th Canadian Conference on Computational Geometry (CCCG 2004), pp. 86–90 (2004)Google Scholar
19. 19.
Worman, C., Yang, B.: On the computation and chromatic number of colored domino tilings. In: Canadian Conference on Computational Geometry, CCCG 2005 (2005)Google Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2005

## Authors and Affiliations

• Chris Worman
• 1
• Boting Yang
• 1
1. 1.Department of Computer ScienceUniversity of Regina