Skip to main content

Exact and Approximation Algorithms for Computing the Dilation Spectrum of Paths, Trees, and Cycles

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

  • 1030 Accesses

Abstract

Let G be a graph embedded in Euclidean space. For any two vertices of G their dilation denotes the length of a shortest connecting path in G, divided by their Euclidean distance. In this paper we study the spectrum of the dilation, over all pairs of vertices of G. For paths, trees, and cycles in 2D we present O(n 3/2 + ε) randomized algorithms that compute, for a given value κ ≥ 1, the exact number of vertex pairs of dilation > κ. Then we present deterministic algorithms that approximate the number of vertex pairs of dilation > κ up to an 1+η factor. They run in time O(n log2 n) for chains and cycles, and in time O(n log3 n) for trees, in any constant dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss, M.: Computing the detour and spanning ratio of paths, trees and cycles in 2D and 3D (to appear in Discrete and Computational Geometry)

    Google Scholar 

  2. Agarwal, P., Klein, R., Knauer, C., Sharir, M.: Computing the detour of polygonal curves. Technical Report B 02-03, Freie Universität Berlin, Fachbereich Mathematik und Informatik (2002)

    Google Scholar 

  3. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42, 67–90 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  5. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier Science, Amsterdam (1999)

    Google Scholar 

  6. Farshi, M., Giannopoulos, P., Gudmundsson, J.: Finding the best shortcut in a geometric network. In: 21st Ann. ACM Symp. Comput. Geom., pp. 327–335 (2005)

    Google Scholar 

  7. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16, 1004–1022 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Langerman, S., Morin, P., Soss, M.: Computing the maximum detour and spanning ratio of planar chains, trees and cycles. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 250–261. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–245 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Narasimhan, G., Smid, M.: Approximating the stretch factor of Euclidean Graphs. SIAM J. Comput. 30(3), 978–989 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (to appear)

    Google Scholar 

  13. Peleg, D., Schäffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sharir, M., Agarwal, P.: Davenport-Schinzel sequences and their geometric applications. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  15. Smid, M.: Closest-point problems in computational geometry. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 877–935. Elsevier Science, Amsterdam (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klein, R., Knauer, C., Narasimhan, G., Smid, M. (2005). Exact and Approximation Algorithms for Computing the Dilation Spectrum of Paths, Trees, and Cycles. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_85

Download citation

  • DOI: https://doi.org/10.1007/11602613_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics