Skip to main content

Embedding Point Sets into Plane Graphs of Small Dilation

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

Let S be a set of points in the plane. What is the minimum possible dilation of all plane graphs that contain S? Even for a set S as simple as five points evenly placed on the circle, this question seems hard to answer; it is not even clear if there exists a lower bound >1. In this paper we provide the first upper and lower bounds for the embedding problem.

  1. 1

    Each finite point set can be embedded into the vertex set of a finite triangulation of dilation ≤ 1.1247.

  2. 2

    Each embedding of a closed convex curve has dilation ≥ 1.00157.

  3. 3

    Let P be the plane graph that results from intersecting n infinite families of equidistant, parallel lines in general position. Then the vertex set of P has dilation \(\geq 2/\sqrt{3} \approx 1.1547\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss, M.: Computing the Detour and Spanning Ratio of Paths, Trees and Cycles in 2D and 3D (2005) (manuscript, submitted for publication)

    Google Scholar 

  2. Apostol, T.M.: Dirichlet Series in Number Theory, 2nd edn., pp. 148–155. Springer, Heidelberg (1997)

    Google Scholar 

  3. Arikati, S.R., Chen, D.Z., Chew, L.P., Das, G., Smid, M.: Planar Spanners and Approximate Shortest Path Queries Among Obstacles in the Plane. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer, Heidelberg (1996)

    Google Scholar 

  4. Das, G., Joseph, D.: Which Triangulations Approximate the Complete Graph? In: Djidjev, H.N. (ed.) Optimal Algorithms. LNCS, vol. 401, pp. 168–192. Springer, Heidelberg (1989)

    Google Scholar 

  5. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay Graphs Are Almost as Good as Complete Graphs. Discrete & Computational Geometry 5, 399–407 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dumitrescu, A., GrĂ¼ne, A., Rote, G.: On the Geometric Dilation of Curves and Point Sets (2004) (manuscript)

    Google Scholar 

  7. Dumitrescu, A., Ebbers-Baumann, A., GrĂ¼ne, A., Klein, R., Rote, G.: On Geometric Dilation and Halving Chords. In: Dehne, F., LĂ³pez-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 244–255. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Ebbers-Baumann, A., GrĂ¼ne, A., Klein, R.: On the Geometric Dilation of Finite Point Sets. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 250–259. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Ebbers-Baumann, A., GrĂ¼ne, A., Klein, R.: Geometric Dilation of Closed Planar Curves: New Lower Bounds. To appear in Computational Geometry: Theory and Applications

    Google Scholar 

  10. Ebbers-Baumann, A., Klein, R., Langetepe, E., Lingas, A.: A Fast Algorithm for Approximating the Detour of a Polygonal Chain. Computational Geometry: Theory and Applications 27, 123–134 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier, Amsterdam (1999)

    Google Scholar 

  12. Eppstein, D.: The Geometry Junkyard, http://www.ics.uci.edu/~eppstein/junkyard/dilation-free/

  13. Eppstein, D., Hart, D.: Shortest Paths in an Arrangement with k Line Orientations. In: Proceedings 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 310–316 (1999)

    Google Scholar 

  14. Fekete, S., Klein, R., NĂ¼chter, A.: Online Searching with an Autonomous Robot. In: Workshop on Algorithmic Foundations of Robotics (2004)

    Google Scholar 

  15. Hlawka, E.: Theorie der Gleichverteilung. BI Wissenschaftsverlag

    Google Scholar 

  16. Keil, J.M., Gutwin, C.A.: The Delaunay Triangulation Closely Approximates the Complete Euclidean Graph. Discrete Comput. Geom. 7, 13–28 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lorenz, D.: On the Dilation of Finite Point Sets. Diploma Thesis. Bonn (2005)

    Google Scholar 

  18. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ebbers-Baumann, A., GrĂ¼ne, A., Karpinski, M., Klein, R., Knauer, C., Lingas, A. (2005). Embedding Point Sets into Plane Graphs of Small Dilation. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_3

Download citation

  • DOI: https://doi.org/10.1007/11602613_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics