Performance and Power Evaluation of an Intelligently Adaptive Data Cache

  • Domingo Benítez
  • Juan Carlos Moure
  • Dolores Isabel Rexachs
  • Emilio Luque
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3769)


We describe the analysis of an on-line pattern-recognition algorithm to dynamically control the configuration of the L1 data cache of a high-performance processor. The microarchitecture achieves higher performance and energy saving due to the accommodation of operating frequency, capacity, set-associativity, line size, hit latency, energy per access, and chip area to program workload and ILP. We show that for the operating frequency 4.5 GHz, the execution time is always reduced with an average measure of 12.1% when compared to a non-adaptive high-performance processor. Additionally, the energy saving is 2.7% on average, and t1he product time-energy is reduced on average by 14.9%. We also consider a profile-based reconfiguration of data cache, which allows picking different cache configurations but only one can be chosen for each program. Experimental results indicate that this approach yields a high percentage of the performance improvement and energy saving achieved by the on-line algorithm.


Dynamic Adaptation Chip Area Data Cache Line Size Baseline Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akiyoshi, H., Shimizu, H., Matsumoto, T., Kobayashi, K., Sambonsugi, Y.: A 320ps access, 3 GHz cycle, 144 Kb SRAM macro in 90nm CMOS technology using an all-stage reset control signal generator. In: Proc. IEEE Solid-State Circuits Conference, pp. 460–508 (2003)Google Scholar
  2. 2.
    Bahar, R., Albera, G., Manne, S.: Power and performance tradeoffs using various caching strategies. In: Proc. Symp. Low Power Electronics and Design, pp. 64–69. ACM Press, New York (1998)Google Scholar
  3. 3.
    Balasubramonian, R., Albonesi, D.H., Buyuktosunoglu, A., Dwarkadas, S.: A Dynamically Tunable Memory Hierarchy. IEEE Tran. on Computers 52(10), 1243–1257 (2003)CrossRefGoogle Scholar
  4. 4.
    Benitez, D.: Performance of Reconfigurable Architectures for Image-Processing Applications. Journal of Systems Architecture 49(4-6), 193–210 (2003)CrossRefGoogle Scholar
  5. 5.
    Burger, D., Austin, T.M.: The SimpleScalar Toolset. Ver. 2.0. Computer Architecture News 25(3), 13–25 (1997)CrossRefGoogle Scholar
  6. 6.
    Compton, K., Hauck, S.: Reconfigurable Computing: A survey of Systems and Software. ACM Computing Surveys 34(2), 171–210 (2002)CrossRefGoogle Scholar
  7. 7.
    Dhodapkar, A.S., Smith, J.E.: Managing Multi-Configuration Hardware via Dynamic Working Set Analysis. In: Proc. 29th Intl. Symposium on Computer Architecture, pp. 233–244. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  8. 8.
    Dropsho, S., Buyuktosunoglu, A., Balasubramonian, R., Albonesi, D.H., Dwarkadas, S., Semeraro, G., Magklis, G., Scott, M.L.: Integrating Adaptive On-Chip Storage Structures for Reduced Dynamic Power. In: Proc. Intl. Conference Parallel Architectures and Compilation Techniques, pp. 41–152. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  9. 9.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2000)Google Scholar
  10. 10.
    Hu, Z., Kaxiras, S., Martonosi, M.: Timekeeping in the memory system: predicting and optimizing memory behavior. In: Proc. 29th Intl. Symposium Computer Architecture, pp. 209–220. IEEE Computer, Los Alamitos (2002)Google Scholar
  11. 11.
    Karnik, T., Borkar, S., De, V.: Sub-90nm technologies: challenges and opportunities for CAD. In: Proc. Conference Computer-Aided Design, pp. 203–206. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  12. 12.
    Kin, J., Gupta, M., Mangione-Smith, W.: The filter cache: an energy efficient memory structure. In: Proc. 30th Intl. Symposium on Microarchitecture, pp. 184–193. IEEE Comp. Society, Los Alamitos (1997)CrossRefGoogle Scholar
  13. 13.
    Magklis, G., Scott, M.L., Semeraro, G., Albonesi, D.H., Dropsho, S.: Profile-based Dynamic Voltage and Frequency Scaling for a Multiple Clock Domain Microprocessor. In: Proc. 30th Intl. Symposium Computer Architecture, pp. 14–25. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  14. 14.
    Moure, J.C., Rexachs, D.I., Luque, E.: The KScalar Simulator. ACM Journal of Educational Resources in Computing (JERIC) 2(1), 73–116 (2002)CrossRefGoogle Scholar
  15. 15.
    Semeraro, G., Magklis, G., Balasubramonian, R., Albonesi, D.H., Dwarkadas, S., Scott, M.L.: Energy-Efficient Processor Design Using Multiple Clock Domains with Dynamic Voltage and Frequency Scaling. In: Proc. 8th Intl. Symposium on High-Performance Computer Architecture, pp. 29–42. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  16. 16.
    Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically Characterizing Large Scale Programs. In: Proc. 10th Intl. Conference Architectural Support for Programming Languages and Operating Systems, pp. 45–57. ACM Press, New York (2002)CrossRefGoogle Scholar
  17. 17.
    Sherwood, T., Sair, S., Calder, B.: Phase Tracking and Prediction. In: Proc. 30th Intl. Symposium Computer Architecture, pp. 336–349. ACM Press, New York (2003)Google Scholar
  18. 18.
    Shivakumar, P., Jouppi, N.P.: CACTI 3.0: An Integrated Cache Timing, Power, and Area Model. In: Compact WRL Technical Report 2001/2 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Domingo Benítez
    • 1
  • Juan Carlos Moure
    • 2
  • Dolores Isabel Rexachs
    • 2
  • Emilio Luque
    • 2
  1. 1.DIS Department & IUSIANIUniversity of Las Palmas G.C.Las PalmasSpain
  2. 2.Computer Architecture and Operating Systems (CAOS) DepartmentUniversidad Autónoma de BarcelonaBarcelonaSpain

Personalised recommendations