Skip to main content

A Characterisation of Weak Bisimulation Congruence

  • Chapter

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3838)

Abstract

This paper shows that weak bisimulation congruence can be characterised as rooted weak bisimulation equivalence, even without making assumptions on the cardinality of the sets of states or actions of the processes under consideration.

Keywords

  • Equivalence Relation
  • Isomorphism Class
  • Semantic Context
  • Yield Root
  • Proof Sketch

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theoretical Computer Science 51(1/2), 129–176 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoretical Computer Science 37(1), 77–121 (1985)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes. In: de Bakker, J.W., Hazewinkel, M., Lenstra, J.K. (eds.) Mathematics and Computer Science. CWI Monograph 1, pp. 89–138. North-Holland, Amsterdam (1986)

    Google Scholar 

  4. van Glabbeek, R.J.: The linear time – branching time spectrum II; the semantics of sequential systems with silent moves (extended abstract). In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

    Google Scholar 

  5. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantic. Journal of the ACM 43(3), 555–600 (1996)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32(1), 137–161 (1985)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. 19, pp. 1201–1242. Elsevier Science Publishers B.V (North-Holland), Amsterdam (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Glabbeek, R.J. (2005). A Characterisation of Weak Bisimulation Congruence. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds) Processes, Terms and Cycles: Steps on the Road to Infinity. Lecture Notes in Computer Science, vol 3838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11601548_4

Download citation

  • DOI: https://doi.org/10.1007/11601548_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30911-6

  • Online ISBN: 978-3-540-32425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics