Abstract
In this paper, we prove that Löb’s Logic is a retract of the modal μ-calculus in a suitable category of interpretations. We show that various salient properties like decidability and uniform interpolation are preserved over retractions. We prove a generalization of the de Jongh-Sambin theorem.
Keywords
- Modal Logic
- Monotonic Operator
- Free Variable
- Propositional Logic
- Propositional Variable
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Smoryński, C.: Self-Reference and Modal Logic. Universitext. Springer, New York (1985)
Boolos, G. (ed.): The logic of provability. Cambridge University Press, Cambridge (1993)
Lindström, P.: Provability logic – a short introduction. Theoria 62, 19–61 (1996)
Japaridze, G., de Jongh, D.: The logic of provability. In: Buss, S. (ed.) Handbook of proof theory, pp. 475–546. North-Holland Publishing Co., Amsterdam (1998)
Artemov, S., Beklemishev, L.: Provability logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 13, pp. 229–403. Kluwer, Dordrecht (2004)
Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27, 234–241 (1983)
Bradfield, J., Stirling, C.: Modal logics and mu-calculi: an introduction. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 293–330. Elsevier, Amsterdam (2001)
van Benthem, J.: Modal frame correspondences generalized. Technical Report DARE electronic archive 148523, Institute for Logic, Language and Computation, University of Amsterdam, Plantage Muidergracht 24, to appear in Studia Logica, issue dedicated to the memory of Wim Blok (2005)
Pitts, A.: On an interpretation of second order quantification in first order intuitionistic propositional logic. Journal of Symbolic Logic 57, 33–52 (1992)
Shavrukov, V.: Subalgebras of diagonalizable algebras of theories containing arithmetic. Dissertationes mathematicae (Rozprawy matematyczne) CCCXXIII (1993)
Ghilardi, S., Zawadowski, M.: A sheaf representation and duality for finitely presented Heyting algebras. Journal of Symbolic Logic 60, 911–939 (1995)
Visser, A.: Uniform interpolation and layered bisimulation. In: Hájek, P. (ed.) Gödel 1996, Logical Foundations of Mathematics, Computer Science and Physics —Kurt Gödel’s Legacy, pp. 139–164. Springer, Berlin (1996)
Ghilardi, S., Zawadowski, M.: Sheaves, Games and Model Completions. Trends In Logic, Studia Logica Library, vol. 14. Kluwer, Dordrecht (2002)
d’ Agostino, G., Hollenberg, M.: Uniform interpolation, automata and the modal μ-calculus. In: Kracht, M., de Rijke, M., Wansing, H., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 1, pp. 73–84. CSLI Publications, Stanford (1998)
Ghilardi, S.: Unification in intuitionistic logic. The Journal of Symbolic Logic 64, 859–880 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Visser, A. (2005). Löb’s Logic Meets the μ-Calculus. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds) Processes, Terms and Cycles: Steps on the Road to Infinity. Lecture Notes in Computer Science, vol 3838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11601548_3
Download citation
DOI: https://doi.org/10.1007/11601548_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30911-6
Online ISBN: 978-3-540-32425-6
eBook Packages: Computer ScienceComputer Science (R0)
