Skip to main content

Löb’s Logic Meets the μ-Calculus

  • Chapter

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3838)

Abstract

In this paper, we prove that Löb’s Logic is a retract of the modal μ-calculus in a suitable category of interpretations. We show that various salient properties like decidability and uniform interpolation are preserved over retractions. We prove a generalization of the de Jongh-Sambin theorem.

Keywords

  • Modal Logic
  • Monotonic Operator
  • Free Variable
  • Propositional Logic
  • Propositional Variable

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smoryński, C.: Self-Reference and Modal Logic. Universitext. Springer, New York (1985)

    MATH  Google Scholar 

  2. Boolos, G. (ed.): The logic of provability. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  3. Lindström, P.: Provability logic – a short introduction. Theoria 62, 19–61 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Japaridze, G., de Jongh, D.: The logic of provability. In: Buss, S. (ed.) Handbook of proof theory, pp. 475–546. North-Holland Publishing Co., Amsterdam (1998)

    CrossRef  Google Scholar 

  5. Artemov, S., Beklemishev, L.: Provability logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 13, pp. 229–403. Kluwer, Dordrecht (2004)

    Google Scholar 

  6. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27, 234–241 (1983)

    CrossRef  MathSciNet  Google Scholar 

  7. Bradfield, J., Stirling, C.: Modal logics and mu-calculi: an introduction. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 293–330. Elsevier, Amsterdam (2001)

    CrossRef  Google Scholar 

  8. van Benthem, J.: Modal frame correspondences generalized. Technical Report DARE electronic archive 148523, Institute for Logic, Language and Computation, University of Amsterdam, Plantage Muidergracht 24, to appear in Studia Logica, issue dedicated to the memory of Wim Blok (2005)

    Google Scholar 

  9. Pitts, A.: On an interpretation of second order quantification in first order intuitionistic propositional logic. Journal of Symbolic Logic 57, 33–52 (1992)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Shavrukov, V.: Subalgebras of diagonalizable algebras of theories containing arithmetic. Dissertationes mathematicae (Rozprawy matematyczne) CCCXXIII (1993)

    Google Scholar 

  11. Ghilardi, S., Zawadowski, M.: A sheaf representation and duality for finitely presented Heyting algebras. Journal of Symbolic Logic 60, 911–939 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Visser, A.: Uniform interpolation and layered bisimulation. In: Hájek, P. (ed.) Gödel 1996, Logical Foundations of Mathematics, Computer Science and Physics —Kurt Gödel’s Legacy, pp. 139–164. Springer, Berlin (1996)

    Google Scholar 

  13. Ghilardi, S., Zawadowski, M.: Sheaves, Games and Model Completions. Trends In Logic, Studia Logica Library, vol. 14. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  14. d’ Agostino, G., Hollenberg, M.: Uniform interpolation, automata and the modal μ-calculus. In: Kracht, M., de Rijke, M., Wansing, H., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 1, pp. 73–84. CSLI Publications, Stanford (1998)

    Google Scholar 

  15. Ghilardi, S.: Unification in intuitionistic logic. The Journal of Symbolic Logic 64, 859–880 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Visser, A. (2005). Löb’s Logic Meets the μ-Calculus. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds) Processes, Terms and Cycles: Steps on the Road to Infinity. Lecture Notes in Computer Science, vol 3838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11601548_3

Download citation

  • DOI: https://doi.org/10.1007/11601548_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30911-6

  • Online ISBN: 978-3-540-32425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics