Skip to main content

Axiomatic Rewriting Theory I: A Diagrammatic Standardization Theorem

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3838))

Abstract

By extending nondeterministic transition systems with concurrency and copy mechanisms, Axiomatic Rewriting Theory provides a uniform framework for a variety of rewriting systems, ranging from higher-order systems to Petri nets and process calculi. Despite its generality, the theory is surprisingly simple, based on a mild extension of transition systems with independence: an axiomatic rewriting system is defined as a 1-dimensional transition graph \(\mathcal{G}\) equipped with 2-dimensional transitions describing the redex permutations of the system, and their orientation. In this article, we formulate a series of elementary axioms on axiomatic rewriting systems, and establish a diagrammatic standardization theorem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. In: Proceedings of Principle Of Programming Languages (1990)

    Google Scholar 

  2. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  3. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. North Holland, Amsterdam (1985)

    MATH  Google Scholar 

  4. M. A. Bednarczyck.: Categories of asynchronous systems. PhD thesis, University of Sussex (1988)

    Google Scholar 

  5. Berry, G.: Modèles complètement adéquats et stables des lambda-calculs typés. Thèse de Doctorat d’Etat, Université Paris VII (1979)

    Google Scholar 

  6. Boudol, G.: Computational semantics of term rewriting systems. In: Nivat, M., Reynolds, J.C. (eds.) Algebraic methods in Semantics, Cambridge University Press, Cambridge (1985)

    Google Scholar 

  7. Church, A., Rosser, J.B.: Some properties of conversion. Trans. Amer. Math. Soc. 39, 472–482 (1936)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clark, D., Kennaway, R.: Event structures and non-orthogonal term graph rewriting. Mathematical Structure in Computer Science 6, 545–578 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Curien, P.-L., Hardin, T., Ríos, A.: Strong normalization of substitutions. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629. Springer, Heidelberg (1992)

    Google Scholar 

  10. Curry, H.-B., Feys, R.: Combinatory Logic, vol. 1. North Holland, Amsterdam (1958)

    MATH  Google Scholar 

  11. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science B: Formal Methods and Semantics, ch. 6, pp. 243–320. North-Holland, Amsterdam (1990)

    Google Scholar 

  12. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential control and state. Theoretical Computer Science (1992)

    Google Scholar 

  13. Gonthier, G., Lévy, J.-J., Melliès, P.-A.: An abstract standardization theorem. In: Proceedings of the 7th Annual IEEE Symposium on Logic In Computer Science, Santa Cruz (1992)

    Google Scholar 

  14. Hardin, T.: Confluence Results for the Pure Strong Categorical Combinatory Logic. λ-calculi as subsystems of CCL. Journal of Theoretical Computer Science (1989)

    Google Scholar 

  15. Hardin, T., Maranget, L., Pagano, B.: Functional Back-Ends within the Lambda-Sigma Calculus. In: Proc. of the 1996 International Conference on Functional Programming (1996)

    Google Scholar 

  16. Hilken, B.P.: Towards a proof theory of rewriting: the simply typed 2ł-calculus. Theoretical Computer Science 170, 407–444 (1996)

    MATH  MathSciNet  Google Scholar 

  17. Huet, G.: Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. Journal of the Association for Computing Machinery 27(4), 797–821 (1980)

    MATH  MathSciNet  Google Scholar 

  18. Huet, G., Lévy, J.-J.: Call by Need Computations in Non-Ambiguous Linear Term Rewriting Systems. Rapport de recherche INRIA 359 (1979); Lassez, J.-L., Plotkin, G.D. (eds.): Computational Logic; Essays in Honor of Alan Robinson, pp. 394–443. MIT Press, Cambridge (1991) Reprinted as: Computations in orthogonal rewriting systems

    Google Scholar 

  19. Jouannaud, J.-P.: Rewrite proofs and computations. In: Schwichtenberg, H. (ed.) Proof and Computation. NATO series F: Computer and Systems Sciences, vol. 139, pp. 173–218. Springer, Heidelberg (1995)

    Google Scholar 

  20. Klop, J.W.: Combinatory Reduction Systems. Thèse de l’Université d’Utrecht, Pays-Bas (1980)

    Google Scholar 

  21. Klop, J.W.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2. Oxford Science Publications, Oxford (1992)

    Google Scholar 

  22. Klop, J.W., van Oostrom, V., de Vrijer, R.: Orthogonality. In: TeReSe (ed.) Term Rewriting System. Cambridge Tracts in Theoretical Computer Science, ch. 4 in this book, vol. 55. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  23. Leinster, T.: Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series, vol. 298. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  24. Lévy, J.-J.: Réductions correctes et optimales dans le λ-calcul. Thèse de Doctorat d’Etat, Université Paris VII (1978)

    Google Scholar 

  25. Mac Lane, S.: Categories for the working mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  26. Melliès, P.-A.: Typed Lambda-Calculi with Explicit Substitutions may not terminate. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  27. Melliès, P.-A.: Description abstraite des Systèmes de Réécriture. Thèse de Doctorat, Université Paris VII (1996)

    Google Scholar 

  28. Melliès, P.-A.: Axiomatic Rewriting Theory II: The lambda-sigma-calculus enjoys finite normalisation cones. Journal of Logic and Computation (2000); special issue devoted to the School on Rewriting and Type Theory

    Google Scholar 

  29. Melliès, P.-A.: Axiomatic Rewriting Theory III: A factorisation theorem in Rewriting Theory. In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 49–68. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  30. Melliès, P.-A.: Axiomatic Rewriting Theory IV: A stability theorem in Rewriting Theory. In: Proceedings of the 14th Annual Symposium on Logic in Computer Science, Indianapolis (1998)

    Google Scholar 

  31. Melliès, P.-A.: Axiomatic Rewriting Theory VI: Residual Theory Revisited. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, p. 24. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  32. Newman, M.H.A.: On theories with a combinatorial definition of “equivalence”. Annals of Mathematics 43(2), 223–243 (1942)

    Article  MathSciNet  Google Scholar 

  33. Nielsen, M., Winskel, G.: Models for concurrency. In: Abramsky, Gabbay, Maibaum (eds.) Handbook of Logic in Computer Science. Oxford Science (1995)

    Google Scholar 

  34. van Oostrom, V.: Confluence for abstract and higher-order rewriting. PhD Thesis, Vrije Universiteit (1994)

    Google Scholar 

  35. van Oostrom, V., de Vrijer, R.: Equivalence of reductions. In: TeReSe (ed.). Cambridge Tracts in Theoretical Computer Science, ch.8, vol.55. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  36. van Raamsdonk, F.: Confluence and normalization for higher-order rewriting, PhD Thesis, Vrije Universiteit, Amsterdam (1996)

    Google Scholar 

  37. Panangaden, P., Shanbhogue, V., Stark, E.W.: Stability and sequentiality in data flow networks. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  38. Plotkin, G.: Call-by-name, call-by-value, and the ł-calculus. Theoretical Computer Science, vol. 1 (1975)

    Google Scholar 

  39. Shields, M.W.: Concurrent machines. Computer Journal 28, 449–465 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zantema, H.: Termination of term rewriting by interpretation. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656. Springer, Heidelberg (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melliès, PA. (2005). Axiomatic Rewriting Theory I: A Diagrammatic Standardization Theorem. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds) Processes, Terms and Cycles: Steps on the Road to Infinity. Lecture Notes in Computer Science, vol 3838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11601548_23

Download citation

  • DOI: https://doi.org/10.1007/11601548_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30911-6

  • Online ISBN: 978-3-540-32425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics