Skip to main content

Model Theory for Process Algebra

  • Chapter
  • 479 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3838)

Abstract

We present a first-order extension of the algebraic theory about processes known as ACP and its main models. Useful predicates on processes, such as deadlock freedom and determinism, can be added to this theory through first-order definitional extensions. Model theory is used to analyse the discrepancies between identity in the models of the first-order extension of ACP and bisimilarity of the transition systems extracted from these models, and also the discrepancies between deadlock freedom in the models of a suitable first-order definitional extension of this theory and deadlock freedom of the transition systems extracted from these models. First-order definitions are material to the formalization of an interpretation of one theory about processes in another. We give a comprehensive example of such an interpretation too.

Keywords

  • Model Theory
  • Transition System
  • Predicate Symbol
  • Process Algebra
  • Axiom Schema

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60, 109–137 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

    CrossRef  Google Scholar 

  3. Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Google Scholar 

  4. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  5. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic and Algebraic Programming 51, 125–156 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1–21. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  7. Baeten, J.C.M., Bergstra, J.A.: On sequential composition, action prefixes and process prefix. Formal Aspects of Computing 6, 250–268 (1994)

    CrossRef  MATH  Google Scholar 

  8. Shoenfield, J.R.: Mathematical Logic. Addison-Wesley Series in Logic. Addison-Wesley, Reading (1967)

    MATH  Google Scholar 

  9. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. Studies in Logic and the Foundations of Mathematics, vol. 73. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  10. Hodges, W.A.: Model Theory. Encyclopedia of Mathematics and Its Applications, vol. 42. Cambridge University Press, Cambridge (1993)

    CrossRef  MATH  Google Scholar 

  11. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theoretical Computer Science 51, 129–176 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. Journal of the ACM 32, 137–161 (1985)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes. In: de Bakker, J.W., Hazewinkel, M., Lenstra, J.K. (eds.) Proceedings Mathematics and Computer Science I. CWI Monograph, vol. 1, pp. 89–138. North-Holland, Amsterdam (1986)

    Google Scholar 

  14. Bergstra, J.A., Klop, J.W.: Process algebra: Specification and verification in bisimulation semantics. In: Hazewinkel, M., Lenstra, J.K., Meertens, L.G.L.T. (eds.) Proceedings Mathematics and Computer Science II. CWI Monograph, vol. 4, pp. 61–94. North-Holland, Amsterdam (1986)

    Google Scholar 

  15. Bergstra, J.A., Klop, J.W.: Process theory based on bisimulation semantics. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 50–122. Springer, Heidelberg (1989)

    CrossRef  Google Scholar 

  16. Bergstra, J.A., Klop, J.W.: A convergence theorem in process algebra. In: de Bakker, J.W., Rutten, J.J.M.M. (eds.) Ten Years of Concurrency Semantics, pp. 164–195. World Scientific, Singapore (1992)

    Google Scholar 

  17. van Benthem, J.F.A.K., Bergstra, J.A.: Logic of transition systems. Journal of Logic, Language and Information 3, 247–283 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Fokkink, W.J.: Introduction to Process Algebra. In: Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000)

    Google Scholar 

  19. van Benthem, J.F.A.K., van Eijck, D.J.N., Stebletsova, V.: Modal logic, transition systems and processes. Journal of Logic and Computation 4, 811–855 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Bergstra, J.A., Klop, J.W.: The algebra of recursively defined processes and the algebra of regular processes. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 82–95. Springer, Heidelberg (1984)

    Google Scholar 

  21. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  22. Fokkink, W.J.: A complete equational axiomatization for prefix iteration. Information Processing Letters 52, 333–337 (1994)

    CrossRef  MathSciNet  Google Scholar 

  23. Bergstra, J.A., Bethke, I., Ponse, A.: Process algebra with iteration and nesting. Computer Journal 37, 243–258 (1994)

    CrossRef  Google Scholar 

  24. Bergstra, J.A., Fokkink, W.J., Ponse, A.: Process algebra with recursive operations. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 333–389. Elsevier, Amsterdam (2001)

    CrossRef  Google Scholar 

  25. Bergstra, J.A., Ponse, A.: Non-regular iterators in process algebra. Theoretical Computer Science 269, 203–229 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. Baeten, J.C.M., Bergstra, J.A.: Real time process algebra. Formal Aspects of Computing 3, 142–188 (1991)

    CrossRef  Google Scholar 

  27. Baeten, J.C.M., Bergstra, J.A.: Discrete time process algebra. Formal Aspects of Computing 8, 188–208 (1996)

    CrossRef  MATH  Google Scholar 

  28. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. In: Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2002)

    Google Scholar 

  29. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Conditional axioms and α/ β-calculus in process algebra. In: Wirsing, M. (ed.) Formal Description of Programming Concepts III, pp. 53–75. North-Holland, Amsterdam (1987)

    Google Scholar 

  30. Bergstra, J.A., Middelburg, C.A., Ştefănescu, G.: Network algebra for asynchronous dataflow. International Journal of Computer Mathematics 65, 57–88 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergstra, J.A., Middelburg, C.A.(. (2005). Model Theory for Process Algebra. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds) Processes, Terms and Cycles: Steps on the Road to Infinity. Lecture Notes in Computer Science, vol 3838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11601548_21

Download citation

  • DOI: https://doi.org/10.1007/11601548_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30911-6

  • Online ISBN: 978-3-540-32425-6

  • eBook Packages: Computer ScienceComputer Science (R0)