Abstract
Skew confluence was introduced as a characterization of non-confluent term rewriting systems that had unique infinite normal forms or Böhm like trees. This notion however is not expressive enough to deal with all possible sources of non-confluence in the context of infinite terms or terms extended with letrec. We present a new notion called ω-skew confluence which constitutes a sufficient and necessary condition for uniqueness. We also present a theory that can lift uniqueness results from term rewriting systems to rewriting systems on terms with letrec. We present our results in the setting of Abstract Böhm Semantics, which is a generalization of Böhm like trees to abstract reduction systems.
Keywords
- Normal Form
- Information Content
- Partial Order
- Garbage Collection
- Substitution Rule
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Ariola, Z.M.: Relating graph and term rewriting via Böhm models. Applicable Algebra in Engineering, Communication and Computing 7(5) (1996)
Ariola, Z.M., Arvind: Properties of a first-order functional language with sharing. Theoretical Computer Science 146, 69–108 (1995)
Ariola, Z.M., Blom, S.: Lambda calculi plus letrec. Technical Report CIS-TR-97-05, Department of computer and information science, University of Oregon
Ariola, Z.M., Blom, S.: Cyclic lambda calculi. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 77–106. Springer, Heidelberg (1997)
Ariola, Z.M., Blom, S.: Lambda calculi plus letrec. Technical Report IR-434, Department of Mathematics and Computer Science, Vrije Universiteit Amsterdam (October 1997)
Ariola, Z.M., Blom, S.: Skew confluence and the lambda calculus with letrec. Annals of Pure and Applied Logic 117(1-3), 95–168 (2002)
Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. Journal of Functional Programming 7(3) (1997)
Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. In: Proc. ACM Conference on Principles of Programming Languages, pp. 233–246 (1995)
Ariola, Z.M., Klop, J.W.: Equational term graph rewriting. Fundamentae Informaticae 26(3,4), 207–240 (1996); Extended version: CWI Report CS-R9552.
Ariola, Z.M., Klop, J.W.: Lambda calculus with explicit recursion. Information and computation 139(2), 154–233 (1997)
Ariola, Z.M., Klop, J.W., Plump, D.: Bisimilarity in term graphs rewriting. Information and Computation 156(1/2), 2–24 (2000)
Barendregt, H., Brus, T., van Eekelen, M., Glauert, J., Kennaway, J., van Leer, M., Plasmeijer, M., Sleep, M.R.: Towards an intermediate language based on graph rewriting. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259. Springer, Heidelberg (1987)
Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics, vol. 103. Elsevier, Amsterdam (1984) (revised edition)
Blom, S.: Term Graph Rewriting - syntax and semantics. PhD thesis, Vrije Universiteit Amsterdam (2001)
Blom, S.: Lifting Infinite Normal Form Definitions from Term Rewriting to Term Graph Rewriting. In: TERMGRAPH 2002 - International Workshop on Term Graph Rewriting (2002)
Blom, S.: An approximation based approach to infinitary lambda calculi. In: van Oostrom (ed.) [33], pp. 221–232 (2004)
Corradini, A.: Term rewriting in CT Σ. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 468–484. Springer, Heidelberg (1993)
de Medeiros Santos, A.L.: Compilation by Transformation in Non-Strict Functional Languages. PhD thesis, University of Glasgow (July 1995)
Dezani-Ciancaglini, M., Giovannetti, E.: From Böhm’s theorem to observational equivalences: an informal account. Electronic Notes in Theoretical Computer Science, vol. 50(2) (2001)
Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
Kahn, G., Plotkin, G.D.: Concrete domains. Theor. Comput. Sci. 121(1&2), 187–277 (1993)
Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: The adequacy of term graph rewriting for simulating term rewriting. In: Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C.D.J. (eds.) Term Graph Rewriting: Theory and Practice, pp. 157–168. John Wiley & Sons, Chichester (1993)
Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Infinitary lambda calculus. In: Proc. Rewriting Techniques and Applications, Kaiserslautern (1995)
Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Transfinite reductions in orthogonal term rewriting systems. Information and Computation 119(1) (1995)
Ketema, J.: Böhm-like trees for term rewriting systems. In: van Oostrom (ed.) [33], pp. 233–248.
Ketema, J., Simonsen, J.G.: Infinitary combinatory reduction systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 438–452. Springer, Heidelberg (2005)
Klop, J.W.: Term rewriting systems. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, vol. II, pp. 1–116. Oxford University Press, Oxford (1992)
Lévy, J.-J.: Réductions Correctes et Optimales dans le Lambda-Calcul. PhD thesis, Universite Paris VII (October 1978)
Plump, D.: Term graph rewriting. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2, ch.1, pp. 3–61. World Scientific, Singapore (1999)
Severi, P., de Vries, F.-J.: An extensional böhm model. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 159–173. Springer, Heidelberg (2002)
Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C.D.J. (eds.): Term Graph Rewriting: Theory and Practice. John Wiley & Sons, Chichester (1993)
Terese: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)
van Oostrom, V. (ed.): RTA 2004. LNCS, vol. 3091. Springer, Heidelberg (2004)
Wadsworth, C.: Semantics And Pragmatics Of The Lambda-Calculus. PhD thesis, University of Oxford (September 1971)
Wadsworth, C.: The Relation between Computational and Denotational Properties for Scott’s D ∞ -Models of the Lambda-Calculus. Theoretical Computer Science 5 (1976)
Welch, P.: Continuous Semantics and Inside-out Reductions. In: Böhm, C. (ed.) Lambda-Calculus and Computer Science Theory. LNCS, vol. 37. Springer, Heidelberg (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ariola, Z.M., Blom, S. (2005). Skew and ω-Skew Confluence and Abstract Böhm Semantics. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds) Processes, Terms and Cycles: Steps on the Road to Infinity. Lecture Notes in Computer Science, vol 3838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11601548_19
Download citation
DOI: https://doi.org/10.1007/11601548_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30911-6
Online ISBN: 978-3-540-32425-6
eBook Packages: Computer ScienceComputer Science (R0)
