Skip to main content

Primitive Rewriting

  • Chapter
  • 494 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3838)

Abstract

Undecidability results in rewriting have usually been proved by reduction from undecidable problems of Turing machines or, more recently, from Post’s Correspondence Problem. Another natural candidate for proofs regarding term rewriting is Recursion Theory, a direction we promote in this contribution.

We present some undecidability results for “primitive” term rewriting systems, which encode primitive-recursive definitions, in the manner suggested by Klop. We also reprove some undecidability results for orthogonal and non-orthogonal rewriting by applying standard results in recursion theory.

Keywords

  • Normal Form
  • Turing Machine
  • Recursive Function
  • Critical Pair
  • Recursion Theory

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This research was supported by the Israel Science Foundation (grant no. 250/05).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Amram, A.M.: General size-change termination and lexicographic descent. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 3–17. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  2. Bockmayr, A.: A note on a canonical theory with undecidable unification and matching problem. J. Automated Reasoning 3(4), 379–381 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Boker, U., Dershowitz, N.: A formalization of the Church-Turing Thesis, Available at, http://www.cs.tau.ac.il/~nachum/papers/ChurchTuringThesis.pdf

  4. Boker, U., Dershowitz, N.: Comparing computational power. Logic Journal of the IGPL (2006) (to appear), Available at, http://www.cs.tau.ac.il/~nachum/papers/ComparingComputationalPower.pdf

  5. Boker, U., Dershowitz, N.: A hypercomputational alien. J. of Applied Mathematica & Computation (2006) (to appear), available at, http://www.cs.tau.ac.il/~nachum/papers/HypercomputationalAlien.pdf

  6. Book, R.V.: Thue systems as rewriting systems. J. Symbolic Computation 3(1,2), 39–68 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Church, A.: The Calculi of Lambda Conversion. Ann. Mathematics Studies, vol. 6. Princeton University Press, Princeton (1941)

    Google Scholar 

  8. Cichon, E.A., Tahhan-Bittar, E.: Strictly orthogonal left linear rewrite systems and primitive recursion. Ann. Pure Appl. Logic 108(1–3), 79–101 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Davis, M.: Computability and Unsolvability. McGraw-Hill, New York (1958)

    MATH  Google Scholar 

  10. Dershowitz, N.: Termination of linear rewriting systems (Preliminary version). In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 448–458. Springer, Heidelberg (1981)

    Google Scholar 

  11. Dershowitz, N.: Termination of rewriting. J. Symbolic Computation 3(1,2), 409–410 (1987); Corrigendum: 4(3), 409–410 (December 1987)

    Google Scholar 

  12. Dershowitz, N.: Hierarchical termination. In: Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 89–105. Springer, Heidelberg (1995)

    Google Scholar 

  13. Dershowitz, N., Hoot, C.: Natural termination. Theoretical Computer Science 142(2), 179–207 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Geser, A., Middeldorp, A., Ohlebusch, E., Zantema, H.: Relative undecidability in term rewriting: I. The termination hierarchy. Information and Computation 178(1), 101–131 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Geser, A., Middeldorp, A., Ohlebusch, E., Zantema, H.: Relative undecidability in term rewriting: II. The confluence hierarchy. Information and Computation 178(1), 132–148 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Geupel, O.: Overlap closures and termination of term rewriting systems. Technical report, Universität Passau, Passau, West Germany (July 1989)

    Google Scholar 

  17. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931); Translated as On Formally Undecidable Propositions of Principia Mathematica and Related Systems. I. In: Davis, M. (ed.) Basic Books, New York. The Undecidable. Raven Press, Hewlett, NY (1965), http://home.ddc.net/ygg/etext/godel/godel3.htm

    CrossRef  Google Scholar 

  18. Godoy, G., Tiwari, A.: Confluence of shallow right-linear rewrite systems. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 541–556. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  19. Godoy, G., Tiwari, A.: Termination of rewrite systems with shallow right-linear, collapsing, and right-ground rules. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 164–176. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  20. Godoy, G., Tiwari, A., Verma, R.: Characterizing confluence by rewrite closure and right ground term rewrite systems. Applied Algebra on Engineering, Communication and Computer Science 15(1), 13–36 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Gramlich, B.: On proving termination by innermost termination. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 93–107. Springer, Heidelberg (1996)

    Google Scholar 

  22. Heilbrunner, S., Hölldobler, S.: The undecidability of the unification and matching problem for canonical theories. Acta Informatica 24(2), 157–171 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations (Preliminary version). In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg (1989)

    Google Scholar 

  24. Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. J. of the Association for Computing Machinery 27(4), 797–821 (1980)

    MATH  MathSciNet  Google Scholar 

  25. Huet, G., Lankford, D.S.: On the uniform halting problem for term rewriting systems. Rapport laboria 283, Institut de Recherche en Informatique et en Automatique, Le Chesnay, France (March 1978)

    Google Scholar 

  26. Huet, G., Oppen, D.C.: Equations and rewrite rules: A survey. In: Book, R. (ed.) Formal Language Theory: Perspectives and Open Problems, pp. 349–405. Academic Press, New York (1980)

    Google Scholar 

  27. Iturriaga, R.: Contributions to Mechanical Mathematics. PhD thesis, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA (1967)

    Google Scholar 

  28. Kapur, D., Narendran, P., Otto, F.: On ground confluence of term rewriting systems. Information and Computation 86(1), 14–31 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

  29. Kleene, S.C.: General recursive functions of natural numbers. Mathematische Annales 112, 727–742 (1936)

    CrossRef  MathSciNet  Google Scholar 

  30. Klop, J.W.: Combinatory Reduction Systems. Mathematical Centre Tracts, vol. 127. Mathematisch Centrum, Amsterdam (1980)

    MATH  Google Scholar 

  31. Klop, J.W.: Term rewriting systems: from Church-Rosser to Knuth-Bendix and beyond. In: Paterson, M.S. (ed.) Proceedings of the 17th International Colloquium on Automata, Languages, and Programming, Warwick, England, July 1990. LNCS, pp. 350–369. Springer, Heidelberg (1990)

    CrossRef  Google Scholar 

  32. Klop, J.W.: Term rewriting systems. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, ch.1, pp. 1–117. Oxford University Press, Oxford (1992)

    Google Scholar 

  33. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970); Reprinted in Automation of Reasoning 2, pp. 342–376. Springer, Berlin(1983)

    Google Scholar 

  34. Madala, R.K., Rao, K.: Modular proofs for completeness of hierarchical term rewriting systems. Theoretical Computer Science 151, 487–512 (1995)

    CrossRef  MathSciNet  Google Scholar 

  35. Kurihara, M., Ohuchi, A.: Modularity of simple termination of term rewriting systems with shared constructors. Theoretical Computer Science 103, 273–282 (1992)

    CrossRef  MATH  MathSciNet  Google Scholar 

  36. Lescanne, P.: On termination of one rule rewrite systems. Theoretical Computer Science 132(1–2), 395–401 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  37. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  38. Bezem, T.M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  39. Middeldorp, A.: Modular Properties of Term Rewriting Systems. PhD thesis, Vrije Universiteit, Amsterdam (1990)

    Google Scholar 

  40. Mitsuhashi, I., Oyamaguchi, M., Ohta, Y., Yamada, T.: The joinability and unification problems for confluent semi-constructor TRSs. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 285–300. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  41. Odifreddi, P. (ed.): Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  42. O’Donnell, M.J.: Computing in Systems Described by Equations. LNCS, vol. 58. Springer, Berlin (1977)

    MATH  Google Scholar 

  43. Ohlebusch, E.: Modular Properties of Composable Term Rewriting Systems. PhD thesis, Abteilung Informationstechnik, Universität Bielefeld, Bielefeld, Germany (1994)

    Google Scholar 

  44. Oyamaguchi, M.: The Church-Rosser property for ground term rewriting systems is decidable. Theoretical Computer Science 49(1), 43–79 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  45. Péter, R.: Recursive Functions. Academic Press, London (1967)

    MATH  Google Scholar 

  46. Plaisted, D.A.: Well-founded orderings for proving termination of systems of rewrite rules. Report R-78-932, Department of Computer Science, University of Illinois, Urbana, IL (July 1978)

    Google Scholar 

  47. Post, E.L.: Recursive unsolvability of a problem of Thue. J. of Symbolic Logic 13, 1–11 (1947)

    CrossRef  MathSciNet  Google Scholar 

  48. Rogers Jr, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1966)

    Google Scholar 

  49. Salomaa, K.: Confluence, ground confluence, and termination of monadic term rewriting systems. Journal of Information Processing and Cybernetics EIK 28, 279–309 (1992)

    MATH  Google Scholar 

  50. Salomaa, K.: On the modularity of decidability of completeness and termination. Journal of Automata, Languages and Combinatorics 1, 37–53 (1996)

    MATH  MathSciNet  Google Scholar 

  51. Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Information Processing Letters 25, 141–143 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  52. Toyama, Y., Klop, J.W., Barendregt, H.P.: Termination for direct sums of left-linear complete term rewriting systems. J. of the Association for Computing Machinery 42(6), 1275–1304 (1995)

    MATH  MathSciNet  Google Scholar 

  53. Yasuhara, A.: Recursive Function Theory and Logic. Academic Press, London (1971)

    MATH  Google Scholar 

  54. Zeilberger, D.: A 2-minute proof of the 2nd-most important theorem of the 2nd millennium (2005) (viewed September 2005), http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/halt.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dershowitz, N. (2005). Primitive Rewriting. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds) Processes, Terms and Cycles: Steps on the Road to Infinity. Lecture Notes in Computer Science, vol 3838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11601548_10

Download citation

  • DOI: https://doi.org/10.1007/11601548_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30911-6

  • Online ISBN: 978-3-540-32425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics