Abstract
Undecidability results in rewriting have usually been proved by reduction from undecidable problems of Turing machines or, more recently, from Post’s Correspondence Problem. Another natural candidate for proofs regarding term rewriting is Recursion Theory, a direction we promote in this contribution.
We present some undecidability results for “primitive” term rewriting systems, which encode primitive-recursive definitions, in the manner suggested by Klop. We also reprove some undecidability results for orthogonal and non-orthogonal rewriting by applying standard results in recursion theory.
Keywords
- Normal Form
- Turing Machine
- Recursive Function
- Critical Pair
- Recursion Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This research was supported by the Israel Science Foundation (grant no. 250/05).
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Ben-Amram, A.M.: General size-change termination and lexicographic descent. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 3–17. Springer, Heidelberg (2002)
Bockmayr, A.: A note on a canonical theory with undecidable unification and matching problem. J. Automated Reasoning 3(4), 379–381 (1987)
Boker, U., Dershowitz, N.: A formalization of the Church-Turing Thesis, Available at, http://www.cs.tau.ac.il/~nachum/papers/ChurchTuringThesis.pdf
Boker, U., Dershowitz, N.: Comparing computational power. Logic Journal of the IGPL (2006) (to appear), Available at, http://www.cs.tau.ac.il/~nachum/papers/ComparingComputationalPower.pdf
Boker, U., Dershowitz, N.: A hypercomputational alien. J. of Applied Mathematica & Computation (2006) (to appear), available at, http://www.cs.tau.ac.il/~nachum/papers/HypercomputationalAlien.pdf
Book, R.V.: Thue systems as rewriting systems. J. Symbolic Computation 3(1,2), 39–68 (1987)
Church, A.: The Calculi of Lambda Conversion. Ann. Mathematics Studies, vol. 6. Princeton University Press, Princeton (1941)
Cichon, E.A., Tahhan-Bittar, E.: Strictly orthogonal left linear rewrite systems and primitive recursion. Ann. Pure Appl. Logic 108(1–3), 79–101 (2001)
Davis, M.: Computability and Unsolvability. McGraw-Hill, New York (1958)
Dershowitz, N.: Termination of linear rewriting systems (Preliminary version). In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 448–458. Springer, Heidelberg (1981)
Dershowitz, N.: Termination of rewriting. J. Symbolic Computation 3(1,2), 409–410 (1987); Corrigendum: 4(3), 409–410 (December 1987)
Dershowitz, N.: Hierarchical termination. In: Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 89–105. Springer, Heidelberg (1995)
Dershowitz, N., Hoot, C.: Natural termination. Theoretical Computer Science 142(2), 179–207 (1995)
Geser, A., Middeldorp, A., Ohlebusch, E., Zantema, H.: Relative undecidability in term rewriting: I. The termination hierarchy. Information and Computation 178(1), 101–131 (2002)
Geser, A., Middeldorp, A., Ohlebusch, E., Zantema, H.: Relative undecidability in term rewriting: II. The confluence hierarchy. Information and Computation 178(1), 132–148 (2002)
Geupel, O.: Overlap closures and termination of term rewriting systems. Technical report, Universität Passau, Passau, West Germany (July 1989)
Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931); Translated as On Formally Undecidable Propositions of Principia Mathematica and Related Systems. I. In: Davis, M. (ed.) Basic Books, New York. The Undecidable. Raven Press, Hewlett, NY (1965), http://home.ddc.net/ygg/etext/godel/godel3.htm
Godoy, G., Tiwari, A.: Confluence of shallow right-linear rewrite systems. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 541–556. Springer, Heidelberg (2005)
Godoy, G., Tiwari, A.: Termination of rewrite systems with shallow right-linear, collapsing, and right-ground rules. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 164–176. Springer, Heidelberg (2005)
Godoy, G., Tiwari, A., Verma, R.: Characterizing confluence by rewrite closure and right ground term rewrite systems. Applied Algebra on Engineering, Communication and Computer Science 15(1), 13–36 (2004)
Gramlich, B.: On proving termination by innermost termination. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 93–107. Springer, Heidelberg (1996)
Heilbrunner, S., Hölldobler, S.: The undecidability of the unification and matching problem for canonical theories. Acta Informatica 24(2), 157–171 (1987)
Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations (Preliminary version). In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg (1989)
Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. J. of the Association for Computing Machinery 27(4), 797–821 (1980)
Huet, G., Lankford, D.S.: On the uniform halting problem for term rewriting systems. Rapport laboria 283, Institut de Recherche en Informatique et en Automatique, Le Chesnay, France (March 1978)
Huet, G., Oppen, D.C.: Equations and rewrite rules: A survey. In: Book, R. (ed.) Formal Language Theory: Perspectives and Open Problems, pp. 349–405. Academic Press, New York (1980)
Iturriaga, R.: Contributions to Mechanical Mathematics. PhD thesis, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA (1967)
Kapur, D., Narendran, P., Otto, F.: On ground confluence of term rewriting systems. Information and Computation 86(1), 14–31 (1990)
Kleene, S.C.: General recursive functions of natural numbers. Mathematische Annales 112, 727–742 (1936)
Klop, J.W.: Combinatory Reduction Systems. Mathematical Centre Tracts, vol. 127. Mathematisch Centrum, Amsterdam (1980)
Klop, J.W.: Term rewriting systems: from Church-Rosser to Knuth-Bendix and beyond. In: Paterson, M.S. (ed.) Proceedings of the 17th International Colloquium on Automata, Languages, and Programming, Warwick, England, July 1990. LNCS, pp. 350–369. Springer, Heidelberg (1990)
Klop, J.W.: Term rewriting systems. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, ch.1, pp. 1–117. Oxford University Press, Oxford (1992)
Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970); Reprinted in Automation of Reasoning 2, pp. 342–376. Springer, Berlin(1983)
Madala, R.K., Rao, K.: Modular proofs for completeness of hierarchical term rewriting systems. Theoretical Computer Science 151, 487–512 (1995)
Kurihara, M., Ohuchi, A.: Modularity of simple termination of term rewriting systems with shared constructors. Theoretical Computer Science 103, 273–282 (1992)
Lescanne, P.: On termination of one rule rewrite systems. Theoretical Computer Science 132(1–2), 395–401 (1994)
Manna, Z.: Mathematical Theory of Computation. McGraw-Hill, New York (1974)
Bezem, T.M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge University Press, Cambridge (2002)
Middeldorp, A.: Modular Properties of Term Rewriting Systems. PhD thesis, Vrije Universiteit, Amsterdam (1990)
Mitsuhashi, I., Oyamaguchi, M., Ohta, Y., Yamada, T.: The joinability and unification problems for confluent semi-constructor TRSs. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 285–300. Springer, Heidelberg (2004)
Odifreddi, P. (ed.): Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland, Amsterdam (1989)
O’Donnell, M.J.: Computing in Systems Described by Equations. LNCS, vol. 58. Springer, Berlin (1977)
Ohlebusch, E.: Modular Properties of Composable Term Rewriting Systems. PhD thesis, Abteilung Informationstechnik, Universität Bielefeld, Bielefeld, Germany (1994)
Oyamaguchi, M.: The Church-Rosser property for ground term rewriting systems is decidable. Theoretical Computer Science 49(1), 43–79 (1987)
Péter, R.: Recursive Functions. Academic Press, London (1967)
Plaisted, D.A.: Well-founded orderings for proving termination of systems of rewrite rules. Report R-78-932, Department of Computer Science, University of Illinois, Urbana, IL (July 1978)
Post, E.L.: Recursive unsolvability of a problem of Thue. J. of Symbolic Logic 13, 1–11 (1947)
Rogers Jr, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1966)
Salomaa, K.: Confluence, ground confluence, and termination of monadic term rewriting systems. Journal of Information Processing and Cybernetics EIK 28, 279–309 (1992)
Salomaa, K.: On the modularity of decidability of completeness and termination. Journal of Automata, Languages and Combinatorics 1, 37–53 (1996)
Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Information Processing Letters 25, 141–143 (1987)
Toyama, Y., Klop, J.W., Barendregt, H.P.: Termination for direct sums of left-linear complete term rewriting systems. J. of the Association for Computing Machinery 42(6), 1275–1304 (1995)
Yasuhara, A.: Recursive Function Theory and Logic. Academic Press, London (1971)
Zeilberger, D.: A 2-minute proof of the 2nd-most important theorem of the 2nd millennium (2005) (viewed September 2005), http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/halt.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Dershowitz, N. (2005). Primitive Rewriting. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds) Processes, Terms and Cycles: Steps on the Road to Infinity. Lecture Notes in Computer Science, vol 3838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11601548_10
Download citation
DOI: https://doi.org/10.1007/11601548_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30911-6
Online ISBN: 978-3-540-32425-6
eBook Packages: Computer ScienceComputer Science (R0)
