New Methods to Construct Cheating Immune Multisecret Sharing Scheme

  • Wen Ping Ma
  • Fu Tai Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3822)


In this paper, the constructions of cheating immune secret sharing and multisecret sharing are studied. Based on the theories of matrix and linear block codes over finite field, some new methods to construct cheating immune secret sharing, strictly cheating immune secret sharing and multisecret sharing immune against cheating are proposed. Some cryptographic properties of the constructed secret sharing are analyzed as well.


Quadratic Function Secret Sharing Cheating Immune Function Multisecret Secret Sharing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tompa, M., Woll, H.: How to Share a Secret with cheaters. Journal of Cryptology 1(2), 133–138 (1988)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Jackson, W.-A., Martin, K.M., OKeefe, C.M.: Multisecret threshold schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 126–135. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Nyberg, K., Knudsen, L.R.: Provable security against differential cryptanalysis. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 566–574. Springer, Heidelberg (1993)Google Scholar
  4. 4.
    Pieprzyk, J., Zhang, X.-M.: Cheating prevention in secret sharing over GF(p). In: Pandu Rangan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 226–243. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Pieprzyk, J., Zhang, X.-M.: Multisecret Sharing Immune against cheating. Informatica-An International Journal of Computing and Informatics 26(3), 271–278 (2002)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Pieprzyk, J., Zhang, X.-M.: Constructions of cheating immune secret sharing. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 226–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Ghodosi, H., Piepreyk, J.: Cheating prevention in secret sharing. In: Clark, A., Boyd, C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 328–341. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable secret sharing and its applications[A]. In: Advances in Cryptology, EUCRYPTO 1998 , pp. 32–47. Springer, Berlin (1998)Google Scholar
  10. 10.
    Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 148–164. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    McEliece, R.J.: Finite fields for computer scientists and engineers. Kluwer Academic, Dordrecht (1987)zbMATHGoogle Scholar
  12. 12.
    Ma, W.P., Lee, M.H.: New methods to construct cheating immune functions. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 79–86. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wen Ping Ma
    • 1
  • Fu Tai Zhang
    • 2
  1. 1.Key Laboratory of Computer Network and Information Security, Ministry of EducationXidian UniversityXi’anP.R. China
  2. 2.The School of Mathematics and Computer ScienceNanjing Normal UniversityNanjingP.R. China

Personalised recommendations