Skip to main content

Classification of Universally Ideal Homomorphic Secret Sharing Schemes and Ideal Black-Box Secret Sharing Schemes

  • Conference paper
Information Security and Cryptology (CISC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3822))

Included in the following conference series:

Abstract

A secret sharing scheme (SSS) is homomorphic, if the products of shares of secrets are shares of the product of secrets. For a finite abelian group G, an access structure \({\mathcal A}\) is G-ideal homomorphic, if there exists an ideal homomorphic SSS realizing the access structure \({\mathcal A}\) over the secret domain G. An access structure \({\mathcal A}\) is universally ideal homomorphic, if for any non-trivial finite abelian group G, \({\mathcal A}\) is G-ideal homomorphic.

A black-box SSS is a special type of homomorphic SSS, which works over any non-trivial finite abelian group. In such a scheme, participants only have black-box access to the group operation and random group elements. A black-box SSS is ideal, if the size of the secret sharing matrix is the same as the number of participants. An access structure \({\mathcal A}\) is black-box ideal, if there exists an ideal black-box SSS realizing \({\mathcal A}\).

In this paper, we study universally ideal homomorphic and black-box ideal access structures, and prove that an access structure \({\mathcal A}\) is universally ideal homomorphic (black-box ideal) if and only if there is a regular matroid appropriate for \({\mathcal A}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Transaction on Information Theory IT-40(3), 786–794 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benaloh, J.C.: Secret sharing homomorphisms: Keeping shares of a secret secret. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987)

    Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-Cryptographic fault tolerant distributed computation. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 1–10 (1988)

    Google Scholar 

  4. Blakley, G.R.: Safeguarding cryptographic keys. Proc. AFIPS 1979 Nat. Computer Conf. 48, 313–317 (1979)

    Google Scholar 

  5. Brickell, E.F.: Some ideal secret sharing schemes. Journal of Combinatorial Mathematics and Combinatorial Computing 6, 105–113 (1989)

    MATH  MathSciNet  Google Scholar 

  6. Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. Journal of Cryptology 4(2), 123–134 (1991)

    Article  MATH  Google Scholar 

  7. Cramer, R., Fehr, S.: Optimal black-box secret sharing over arbitrary abelian groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 272. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

    Google Scholar 

  9. Desmedt, Y., Frankel, Y.: Homomorphic zero-knowledge threshold schemes over any finite abelian group. SIAM Journal on Discrete Mathematics 7(4), 667–679 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. van Dijk, M.: A linear construction of perfect secret sharing schemes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 23–36. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  11. Frankel, Y., Desmedt, Y.: Classification of ideal homomorphic threshold schemes over finite abelian groups. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 25–34. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  12. Frankel, Y., Desmedt, Y., Burmester, M.: Non-existence of homomorphic general sharing schemes for some key spaces. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 549–556. Springer, Heidelberg (1993)

    Google Scholar 

  13. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. Proc. IEEE Global Telecommunication Conf. Globecom 87, 99–102 (1987)

    Google Scholar 

  14. Jackson, W.-A., Martin, K.: Geometric secret sharing schemes and their duals. Designs, Codes and Cryptography 4(1), 83–95 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Transaction on Information Theory IT-29(1), 35–41 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, M., Zhou, Z.: Ideal homomorphic secret sharing schemes over cyclic groups. Science in China, Ser. E 41(6) (1998)

    Google Scholar 

  17. Simmons, G.S., Jackson, W.-A., Martin, K.: The geometry of shared secret schemes. Bulletin of the Institute of Combinatorics and its Applications, 71–88 (1991)

    Google Scholar 

  18. Shamir, A.: How to share a secret. Communication of the ACM 22(11), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Truemper, K.: Matroid decomposition. Academic, Boston (1992)

    MATH  Google Scholar 

  21. Welsh, D.J.A.: Matroid theory. Academic, London (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, Z. (2005). Classification of Universally Ideal Homomorphic Secret Sharing Schemes and Ideal Black-Box Secret Sharing Schemes. In: Feng, D., Lin, D., Yung, M. (eds) Information Security and Cryptology. CISC 2005. Lecture Notes in Computer Science, vol 3822. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11599548_32

Download citation

  • DOI: https://doi.org/10.1007/11599548_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30855-3

  • Online ISBN: 978-3-540-32424-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics