Advertisement

You Can Prove So Many Things in Zero-Knowledge

  • Giovanni Di Crescenzo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3822)

Abstract

We present a short survey of known notions of zero- knowledge proof systems in the interactive model and main results about these notions. We then introduce a new notion,an extension of proofs of knowledge,which we call Proofs of Non-Zero Knowledge, as they allow a prover to convince a verifier that he knows a secret satisfying some relation, without revealing any new information about the secret or even the relation that the secret satifies with the common input. We prove a number of basic results about proofs of non-zero knowledge, and, in the process, revisit previously studied protocols, described as ‘proofs of partial knowledge’, which are particular cases of proofs of non-zero knowledge.

Keywords

Boolean Function Proof System Oblivious Transfer Interactive Protocol Common Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barak, B.: How to Go Beyond the Black-Box Simulation Barrier. In: Proc. of the 42nd IEEE Symposium on Foundations of Computer Science, FOCS 2001 (2001)Google Scholar
  2. 2.
    Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Barak, B., Goldreich, O.: Universal Arguments and Their Applications. In: Proc. of IEEE Conference on Computational Complexity 2002 (2002)Google Scholar
  4. 4.
    Bellare, M., Goldreich, O.: Proving Computational Ability, manuscript (1992)Google Scholar
  5. 5.
    Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Rogaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Blum, M.: How to Prove a Theorem So No One Else Can Claim It. In: Proc. of the International Congress of Mathematicians, Berkeley, California (1986)Google Scholar
  7. 7.
    Boppana, R., Hastad, J., Zachos, S.: Does co-NP has Short Interactive Proofs? Information Processing Letters 25, 127–132 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brassard, G., Crépeau, C., Chaum, D.: Minimum Disclosure Proofs of Knowledge. Journal of Computer and System Sciences 37(2), 156–189Google Scholar
  9. 9.
    Cramer, R., Damgard, I., MacKenzie, P.: Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–373. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Cramer, R., Damgard, I., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority secret-ballot elections with linear work. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    De Santis, A., Di Crescenzo, G., Persiano, G.: Secret sharing and perfect zero-knowledge. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 73–84. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On Monotone Formula Closure of SZK. In: Proc. of the 35th IEEE Symposium on Foundations of Computer Science, FOCS 1994 (1994)Google Scholar
  14. 14.
    Di Crescenzo, G., Impagliazzo, R.: Security-Preserving Hardness Amplification for any Regular One-Way Function. In: Proc. of STOC 1999 (1999)Google Scholar
  15. 15.
    Di Crescenzo, G., Sakurai, K., Yung, M.: Zero-Knowledge Proofs of Decision Power: New Protocols and Optimal Round-Complexity. In: Proc. of ICICS 1998 (1998)Google Scholar
  16. 16.
    Di Crescenzo, G., Sakurai, K., Yung, M.: On Zero-Knowledge Proofs: ‘From Membership to Decision. In: Proc. of the 2000 ACM Symposium on Theory of Computing, STOC 2000 (2000)Google Scholar
  17. 17.
    Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. Journal of Cryptology 1, 77–94 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  19. 19.
    Fortnow, L.: The Complexity of Perfect Zero Knowledge. In: Proc. of the 1987 ACM Symposium on Theory of Computing, STOC 1987 (1987)Google Scholar
  20. 20.
    Franklin, M., Sander, T.: Commital deniable proofs and electronic campaign finance. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 373. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Galil, Z., Haber, S., Yung, M.: Minimum-Knowledge Interactive Proofs for Decision Problems. SIAM Journal on Computing 18(4)Google Scholar
  22. 22.
    Garay, J., MacKenzie, P.: Concurrent Oblivious Transfer. In: Proc. of the 41st IEEE Symposium on Foundations of Computer Science, FOCS 2000 (2000)Google Scholar
  23. 23.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing but their Validity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM 38(1), 691–729 (1991)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-Systems. SIAM Journal on Computing 18(1) (1989)Google Scholar
  25. 25.
    Impagliazzo, R., Yung, M.: Direct minimum knowledge computations. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 40–51. Springer, Heidelberg (1988)Google Scholar
  26. 26.
    Itoh, T., Ohta, Y., Shizuya, H.: A Language-Dependent Cryptographic Primitive. Journal of Cryptology 10(1), 37–49 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Shamir, A.: IP=PSPACE. In: Proc. of the 31st IEEE Symposium on Foundations of Computer Science, FOCS 1990 (1990)Google Scholar
  28. 28.
    Tompa, M., Woll, H.: Random Self-Reducibility and Zero-Knowledge Interactive Proofs of Possession of Information. In: Proc. of IEEE FOCS 1987 (1987)Google Scholar
  29. 29.
    Yung, M.: Zero-knowledge proofs of computational power. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 196–207. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  30. 30.
    Zhao, Y., Lee, C.H., Zhao, Y., Zhu, H.: Some observations on zap and its applications. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 180–193. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Giovanni Di Crescenzo
    • 1
  1. 1.Telcordia TechnologiesPiscatawayUSA

Personalised recommendations