The kth-Order Quasi-Generalized Bent Functions over Ring Zp

  • Jihong Teng
  • Shiqu Li
  • Xiaoying Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3822)


In this paper, we propose a new class of logical functions over residue ring of integers modulo p, where p is a prime. The magnitudes of the Chrestenson Spectra for this kind of functions, called as kth-order quasi-generalized Bent functions, take only two values—0 and a nonzero constant. By using the relationships between Chrestenson spectra and the autocorrelation functions for logical functions over ring Z p , we present some equivalent definitions of this kind of functions. In the end, we investigate the constructions of the kth-order quasi-generalized Bent functions, including the typical method and the recursive method from the technique of number theory.


Autocorrelation Function Boolean Function Logical Function Linear Subspace Block Cipher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seberry, J., Zhang, X.M., Zheng, Y.: Relationships among nonlinearity criteria. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 376–388. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 549–562. Springer, Heidelberg (1990)Google Scholar
  3. 3.
    Rothous, O.S.: On Bent Functions. J. Comb. Theory 20A, 300–305 (1976)CrossRefGoogle Scholar
  4. 4.
    Carlet, C.: Partially-bent functions. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 280–291. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    Chee, S., Lee, S., Kim, K.: Semi-bent Functions. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 107–118. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Zheng, Y., Zhang, X.: On Plateaued Functions. IEEE Trans. Inform. Theory 47(3) (2001)Google Scholar
  7. 7.
    Wenfen, L., Shiqu, L., Jihong, T.: The Properties of k-order Quasi-Bent Functions and its Applications. In: The 7th communication conference for the youth, Publishing House of Electronic Industry, pp. 939–943 (2001) (in chinese)Google Scholar
  8. 8.
    Jihong, T., Shiqu, L., Wenying, Z.: The Matrix Characteristics of the Cryptographic Properties of a Special Kind of k–order Quasi-Bent Functions. In: The CCICS 2003, pp. 284–289. The Science Publishing House (2003) (in chinese)Google Scholar
  9. 9.
    Kumar, P., Scholtz, R., Welch, L.: Generalized Bent functions and their Properties. J.combinatorial Theory (Ser. A) 40, 90–107 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Yaqun, Z.: The Properties and Construction of Partially Bent Functionsand Generalized Bent Functions. The doctorate thesis of Information Engineering University, (1998) (in chinese)Google Scholar
  11. 11.
    Dickson, L.E.: History of the theory of number, vol. ∐. Addison-Wesley Publishing Company, Reading (1984)Google Scholar
  12. 12.
    Shiqu, L., Bensheng, Z., Yuzhong, L., et al.: Logical Functions in Cryptoloty. Publishing Company of Software and Eletronic Industry (2003) (in chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jihong Teng
    • 1
  • Shiqu Li
    • 2
  • Xiaoying Huang
    • 1
  1. 1.Department of Mathematics and PhysicsInformation Engineering UniversityZhengzhouPRC
  2. 2.Department of InformationResearch Information Engineering UniversityZhengzhouPRC

Personalised recommendations