Practical Strong Designated Verifier Signature Schemes Based on Double Discrete Logarithms

  • Raylin Tso
  • Takeshi Okamoto
  • Eiji Okamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3822)


We notice that a strong designated verifier signature (SDVS) scheme can easily be realized by any secure one-way and two-party authenticated key agreement scheme. So any SDVS scheme without lower communication/computation cost or enhanced security comparing to these one-way and two-party authenticated key agreement schemes may have less advantage in practical use. In this paper, we introduce an SDVS scheme which realizes low communication/computation cost and is more efficient than current one-way key agreement schemes and SDVS schemes. In addition, we show how to remove a hash function used in this scheme where in this modified scheme, an enhanced security will be provided such that the consistency of a signature cannot be ascertained by any third party even if the signer’s private key is revealed. We will prove the security of our schemes using random oracle models.


CDH assumption DDH assumption double discrete logarithm designated verifier signature one-way two-party authenticated key agreement privacy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aumann, Y., Rabin, M.: Efficient deniable authentication for long messages, International Conference on Theoretical Computer Science in Honor of Professor Manuel Blum’s 60th Birthday (1998), avaible, at
  2. 2.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Deng, X., Lee, C.H., Zhu, H.: Deniable authenticaion protocols. IEE Proceedings –Computers and Digital Techniques 148(2), 101–104 (2001)CrossRefGoogle Scholar
  4. 4.
    Fan, L., Xu, C.X., Li, J.H.: Deniable authentication protocol based on Diffie-Hellman algorithm. Electronics Letters 38(4), 705–706 (2002)CrossRefGoogle Scholar
  5. 5.
    Heng, S.-H., Kurosawa, K.: k-resilient identity-based encryption in the standard model. In: CT-RSA 2004. Lecture Notes in Comput. Sci, vol. 2964, pp. 67–80 (2004)Google Scholar
  6. 6.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for authenticated key agreement. Designs, Codes and Cryptogr 28(2), 119–134 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: Anonymity and efficient construction from any bilinear map. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 107–121. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Okamoto, T., Tso, R., Okamoto, E.: One-way and two-party authenticated ID-based key agreement protocols using pairing. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 122–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Okamoto, T., Tso, R., Takagi, T., Okamoto, E.: k-resilient ID-based key distribution schemes from pairing – three party case. In: WCC 2005, pp. 402–412.Google Scholar
  11. 11.
    Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 40–54. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Shao, Z.: Efficient deniable authentication protocol based on generalized ElGamal signature scheme. Computer Standards & Interfaces 26, 449–454 (2004)CrossRefGoogle Scholar
  13. 13.
    Susilo, W., Zhang, F., Mu, Y.: Identity-based strong designated verifier signature schemes. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 313–324. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Raylin Tso
    • 1
  • Takeshi Okamoto
    • 1
  • Eiji Okamoto
    • 1
  1. 1.Department of Risk Engineering, Graduate School of Systems and Information EngineeringUniversity of TsukubaIbarakiJapan

Personalised recommendations