Skip to main content

Constructions of Almost Resilient Functions

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 3810)

Abstract

The relation between almost resilient function and its component functions is investigated in this paper. We prove that if each nonzero linear combination of f 1,f 2,⋯,f m is an ε-almost(n,1,k)-resilient function, then F=(f 1,f 2,⋯,f m ) is a \(\frac{2^{m}-1}{2^{m}-1}\epsilon\)-almost(n,m,k)-resilient function. In the case ε equals 0, the theorem gives another proof of Linear Combination Lemma for resilient functions. As applications of this theorem, we introduce a method to construct a balanced \(\frac{9}{2}\epsilon\)-almost (3n,2,2k+1)-resilient function from a balanced ε-almost (n,1,k)-resilient function and present a method of improving the degree of the constructed functions with a small trade-off in the nonlinearity and resiliency. At the end of this paper, the relation between balanced almost CI function and its component functions are also concluded.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kurosawa, K., Johansson, T., Stinson, D.: Almost k-wise independent sample spaces and their applications. J. Cryptology 14(4), 231–253 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Naor, J., Naor, M.: Small bias probality spaces:efficient constructions and applications. SIAM Journal on Computing 22, 838–856 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Kurosawa, K., Matsumoto, R.: Almost security of cryptographic boolean functions. IEEE Tran. on Info. theory IT-50(11), 2752–2761 (2004)

    CrossRef  MathSciNet  Google Scholar 

  5. Zhang, X.-M., Zheng, Y.-L.: Cryptographically resilient functions. IEEE Tran. on Info. theory IT-43(5), 1740–1747 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Xiao, G.-Z., Massy, J.: A special characterization of correlation immune combining functions. IEEE Tran. on Info. theory IT-34, 569–571 (1988)

    CrossRef  MATH  Google Scholar 

  7. Gupta, K.C., Sarkar, P.: Improved construction of nonlinear resilient S-Boxes. IEEE Tran. on Info. theory IT-51(1), 339–348 (2005)

    CrossRef  MathSciNet  Google Scholar 

  8. Yan, Y.-X., Lin, X.-D.: Coding Theory and Cryptography. People Post and Telecomunication Publisher (1992) (in Chinese)

    Google Scholar 

  9. Johansson, T., Pasalic, E.: A construction of resilient functions with high nonlinearity. IEEE Tran. on Info. theory IT-49(2), 494–501 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ke, PH., Liu, TL., Wen, QY. (2005). Constructions of Almost Resilient Functions. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds) Cryptology and Network Security. CANS 2005. Lecture Notes in Computer Science, vol 3810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11599371_20

Download citation

  • DOI: https://doi.org/10.1007/11599371_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30849-2

  • Online ISBN: 978-3-540-32298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics