Skip to main content

Similar Keys of Multivariate Quadratic Public Key Cryptosystems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 3810)

Abstract

Most multivariate schemes have potentially much higher performance than other public key cryptosystems[15] [4] [1] [2]. Wolf and Preneel [16] show multivariate quadratic public key schemes have many equivalent keys and provide some transformations to identify the keys. In this paper, we propose the idea of similar keys of MQ-based public key cryptosystems(PKCs) and provide a method to reduce the size of private key in MQ-based PKCs to 50% ~ 70% of its original size. And our method is generic for most MQ-based PKCs except for UOV-like and STS-like schemes. Moreover, our method remains the equivalent security and efficiency with original MQ-based PKCs.

Keywords

  • MQ
  • multivariate
  • public key cryptosystem
  • digital signature
  • similar key

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, J.-M., Yang, B.-Y.: A More Secure and Efficacious TTS Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 320–338. Springer, Heidelberg (2004), full version at http://eprint.iacr.org/2003/160

    CrossRef  Google Scholar 

  2. Courtois, N., Goubin, L., Patarin, J.: SFLASHv3, a Fast Asymmetric Signature Scheme, eprint 2003/211, available at http://eprint.iacr.org/2003/211

  3. Garey, M., Johnson, D.: Computers and Intractability, A Guide to the Theory of NP-completeness, vol. 251 (1979)

    Google Scholar 

  4. Hu, Y.-H., Wang, L.-C., Chen, J.-M., Lai, F., Chou, C.-Y.: An implementation of public key cryptosystem TTM with linear time complexity for decryption. In: Proceedings of IEEE International Symposium on Information Theory 2003, p. 17 (2003)

    Google Scholar 

  5. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Sigature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)

    Google Scholar 

  7. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  8. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

    Google Scholar 

  9. New European Schemes for Signatures, Integrity, and Encryption, project homepage at http://www.cryptonessie.org

  10. Performance of Optimized Implementations of the NESSIE primitives, version 2.0, http://www.cryptonessie.org

  11. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP) Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Google Scholar 

  12. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-Bit Long Digital Signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer, Heidelberg (2001), Updated version available at http://www.cryptonessie.org

    CrossRef  Google Scholar 

  13. http://www.am.ndhu.edu.tw/~lcwang/lcwang.htm

  14. Wang, L.-C., Chang, F.-H.: Tractable Rational Map Cryptosystem, eprint 2004/046, available at http://eprint.iacr.org/2004/046

  15. Wang, L.-C., Hu, Y.-H., Yang, B.-Y., Lai, F., Chou, C.-Y., Yang, B.-Y.: Tractable Rational Map Signature. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 244–257. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  16. Wolf, C., Preneel, B.: Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 275–287. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  17. Wolf, C., Preneel, B.: Taxonomy of Public Key Schemes based on the problem of Multivariate Quadratic equations, eprint 2005/077, available at http://eprint.iacr.org/2005/077

  18. Stallings, W.: Cryptography and Newwork Security Principles and Practice, 2nd edn., p. 356

    Google Scholar 

  19. Yang, B.-Y., Chen, J.-M., Chen, Y.-H.: TTS: High-Speed Signatures on a Low-End Smart Card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 371–385. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, YH., Wang, LC., Chou, CY., Lai, F. (2005). Similar Keys of Multivariate Quadratic Public Key Cryptosystems. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds) Cryptology and Network Security. CANS 2005. Lecture Notes in Computer Science, vol 3810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11599371_18

Download citation

  • DOI: https://doi.org/10.1007/11599371_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30849-2

  • Online ISBN: 978-3-540-32298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics