Abstract
Most multivariate schemes have potentially much higher performance than other public key cryptosystems[15] [4] [1] [2]. Wolf and Preneel [16] show multivariate quadratic public key schemes have many equivalent keys and provide some transformations to identify the keys. In this paper, we propose the idea of similar keys of MQ-based public key cryptosystems(PKCs) and provide a method to reduce the size of private key in MQ-based PKCs to 50% ~ 70% of its original size. And our method is generic for most MQ-based PKCs except for UOV-like and STS-like schemes. Moreover, our method remains the equivalent security and efficiency with original MQ-based PKCs.
Keywords
- MQ
- multivariate
- public key cryptosystem
- digital signature
- similar key
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Chen, J.-M., Yang, B.-Y.: A More Secure and Efficacious TTS Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 320–338. Springer, Heidelberg (2004), full version at http://eprint.iacr.org/2003/160
Courtois, N., Goubin, L., Patarin, J.: SFLASHv3, a Fast Asymmetric Signature Scheme, eprint 2003/211, available at http://eprint.iacr.org/2003/211
Garey, M., Johnson, D.: Computers and Intractability, A Guide to the Theory of NP-completeness, vol. 251 (1979)
Hu, Y.-H., Wang, L.-C., Chen, J.-M., Lai, F., Chou, C.-Y.: An implementation of public key cryptosystem TTM with linear time complexity for decryption. In: Proceedings of IEEE International Symposium on Information Theory 2003, p. 17 (2003)
Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Sigature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)
Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)
New European Schemes for Signatures, Integrity, and Encryption, project homepage at http://www.cryptonessie.org
Performance of Optimized Implementations of the NESSIE primitives, version 2.0, http://www.cryptonessie.org
Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP) Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)
Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-Bit Long Digital Signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer, Heidelberg (2001), Updated version available at http://www.cryptonessie.org
Wang, L.-C., Chang, F.-H.: Tractable Rational Map Cryptosystem, eprint 2004/046, available at http://eprint.iacr.org/2004/046
Wang, L.-C., Hu, Y.-H., Yang, B.-Y., Lai, F., Chou, C.-Y., Yang, B.-Y.: Tractable Rational Map Signature. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 244–257. Springer, Heidelberg (2005)
Wolf, C., Preneel, B.: Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 275–287. Springer, Heidelberg (2005)
Wolf, C., Preneel, B.: Taxonomy of Public Key Schemes based on the problem of Multivariate Quadratic equations, eprint 2005/077, available at http://eprint.iacr.org/2005/077
Stallings, W.: Cryptography and Newwork Security Principles and Practice, 2nd edn., p. 356
Yang, B.-Y., Chen, J.-M., Chen, Y.-H.: TTS: High-Speed Signatures on a Low-End Smart Card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 371–385. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hu, YH., Wang, LC., Chou, CY., Lai, F. (2005). Similar Keys of Multivariate Quadratic Public Key Cryptosystems. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds) Cryptology and Network Security. CANS 2005. Lecture Notes in Computer Science, vol 3810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11599371_18
Download citation
DOI: https://doi.org/10.1007/11599371_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30849-2
Online ISBN: 978-3-540-32298-6
eBook Packages: Computer ScienceComputer Science (R0)
