Skip to main content

Partially Parametric SVM

  • Conference paper
  • 1452 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3808)

Abstract

In this paper we propose a simple and intuitive method for constructing partially linear models and, in general, partially parametric models, using support vector machines for regression and, in particular, using regularization networks (splines). The results are more satisfactory than those for classical nonparametric approaches. The method is based on a suitable approach to selecting the kernel by relaying on the properties of positive definite functions. No modification is required of the standard SVM algorithms, and the approach is valid for the ε-insensitive loss. The approach described here can be immediately applied to SVMs for classification and to other methods that use the kernel as the inner product.

Keywords

  • Support Vector Machine
  • Support Vector
  • Feature Space
  • Kernel Principal Component Analysis
  • Support Vector Machine Algorithm

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronszajn, N.: Theory of Reproducing Kernels. Transactions of the American Mathematical Society 68, 337–404 (1950)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Cristianini, N., Shawe-Taylor, J.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  3. Espinoza, M., Pelckmans, K., Hoegaerts, L., Suykens, J., De Moor, B.: A comparative study of LS-SVMs applied to the Silver box identification problem. In: Proceedings of the 6th IFAC Nonlinear Control Systems (NOLCOS), Stutgartt, Germany (2004)

    Google Scholar 

  4. Matías, J.M., Vaamonde, A., Taboada, J., González-Manteiga, W.: Support Vector Machines and Gradient Boosting for Graphical Estimation of a Slate Deposit. Journal of Stochastic Environmental Research and Risk Assessment 18, 309–323 (2004)

    CrossRef  MATH  Google Scholar 

  5. Matías, J.M., González-Manteiga, W.: Proceedings of the Joint 13th International Conference on Artificial Neural Networks and 10th International Conference on Neural Information Processing. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 209–216. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Robinson, P.M.: Root-n-consistent semiparametric regression. Econometrica 56, 931–954 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  8. Smola, A., Frieβ, J., Schölkopf, B.: Semiparametric support vector and linear programming machines. In: Advances in Neural Information Processing Systems, vol. 11, pp. 585–591. MIT Press, Cambridge (1999)

    Google Scholar 

  9. Speckman, P.: Kernel smoothing in partial linear models. Journal of the Royal Statistical Society, Series B 50, 413–436 (1988)

    MATH  MathSciNet  Google Scholar 

  10. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matías, J.M. (2005). Partially Parametric SVM. In: Bento, C., Cardoso, A., Dias, G. (eds) Progress in Artificial Intelligence. EPIA 2005. Lecture Notes in Computer Science(), vol 3808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595014_7

Download citation

  • DOI: https://doi.org/10.1007/11595014_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30737-2

  • Online ISBN: 978-3-540-31646-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics