Skip to main content

Minimum Redundancy Cut in Ontologies for Semantic Indexing

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3808)

Abstract

This paper presents a new method that aims at improving semantic indexing while reducing the number of indexing terms. Indexing terms are determined using a minimum redundancy cut in a hierarchy of conceptual hypernyms provided by an ontology (e.g. WordNet, EDR). The results of some information retrieval experiments carried out on several standard document collections using the EDR ontology are presented, illustrating the benefit of the method.

Keywords

  • Information Retrieval
  • Average Precision
  • Mean Average Precision
  • Ambiguous Word
  • Indexing Term

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This work was partially supported by the Swiss National Fund for Scientific Research (SNFSR) under grant #200020–103529.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salton, G.: Automatic Information Organization and Retrieval. McGraw-Hill, New York (1968)

    Google Scholar 

  2. Harman, D.: Towards interactive query expansion. In: Proc. of the 11th Annual Int. ACM-SIGIR Conference on Research and development in information retrieval, pp. 321–331 (1988)

    Google Scholar 

  3. Voorhees, E.M.: Using WordNet to disambiguate word senses for text retrieval. In: Proc. of 16th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, pp. 171–180 (1993)

    Google Scholar 

  4. Voorhees, E.M.: Using WordNet for text retrieval. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 285–303. MIT Press, Cambridge (1998)

    Google Scholar 

  5. Richardson, R., Smeaton, A.F.: Using WordNet in a knowledge-based approach to information retrieval. Technical Report CA-0395, Dublin City University, Glasnevin, Dublin 9, Ireland (1995)

    Google Scholar 

  6. Smeaton, A.F., Quigley, I.: Experiments on using semantic distances between words in image caption retrieval. In: Proc. of 19th Int. Conf. on Research and Development in Information Retrieval, pp. 174–180 (1996)

    Google Scholar 

  7. Gonzalo, J., Verdejo, F., Chugur, I., Cigarran, J.: Indexing with WordNet synsets can improve text retrieval. In: Proc. of the COLING/ACL 1998 Workshop on Usage of WordNet for Natural Language Processing, pp. 38–44 (1998)

    Google Scholar 

  8. Gonzalo, J., Verdejo, F., Peters, C., Calzolari, N.: Applying EuroWordNet to multilingual text retrieval. Journal of Computers and the Humanities 32, 185–207 (1998)

    CrossRef  Google Scholar 

  9. Mihalcea, R., Moldovan, D.: Semantic indexing using WordNet senses. In: Proc. of ACL Workshop on IR & NLP (2000)

    Google Scholar 

  10. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41, 391–407 (1990)

    CrossRef  Google Scholar 

  11. Hofmann, T.: Probabilistic latent semantic indexing. In: Proc. of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR), pp. 50–57 (1999)

    Google Scholar 

  12. Whaley, J.M.: An application of word sense disambiguation to information retrieval. Technical Report PCS-TR99-352, Dartmouth College, Computer Science, Hanover, NH (1999)

    Google Scholar 

  13. Miyoshi, H., Kobayashi, M., Sugiyama, K., Ogino, T.: An overview of the EDR electronic dictionary and the current status of its utilization. In: Proc. of COLING, pp. 1090–1093 (1996)

    Google Scholar 

  14. Li, H.: A probabilistic approach to lexical semantic knowledge acquisition and structural disambiguation. Master’s thesis, Graduate School of Science, University of Tokyo (1998)

    Google Scholar 

  15. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  16. Salton, G.: The SMART Retrieval System – Experiments in Automatic Document Processing. Prentice-Hall, Englewood Cliffs (1971)

    Google Scholar 

  17. Seydoux, F., Chappelier, J.C.: Semantic indexing using Minimum Redundancy Cut in ontologies. In: Proc. of the International Conference on Recent Advances in Natural Language Processing (RANLP 2005), Bulgaria (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seydoux, F., Chappelier, JC. (2005). Minimum Redundancy Cut in Ontologies for Semantic Indexing. In: Bento, C., Cardoso, A., Dias, G. (eds) Progress in Artificial Intelligence. EPIA 2005. Lecture Notes in Computer Science(), vol 3808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595014_64

Download citation

  • DOI: https://doi.org/10.1007/11595014_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30737-2

  • Online ISBN: 978-3-540-31646-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics