Feature Selection in a Fuzzy Student Sectioning Algorithm

  • Mahmood Amintoosi
  • Javad Haddadnia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3616)


In this paper a new student sectioning algorithm is proposed. In this method a fuzzy clustering, a fuzzy evaluator and a novel feature selection method is used. Each student has a feature vector, contains his taken courses as its feature elements. The best features are selected for sectioning based on removing those courses that the most or the fewest numbers of students have taken. The Fuzzy c-Means classifier classifies students. After that, a fuzzy function evaluates the produced clusters based on two criteria: balancing sections and students’ schedules similarity within each section. These are used as linguistic variables in a fuzzy inference engine. The selected features determine the best students’ sections. Simulation results show that improvement in sectioning performance is about 18% in comparison with considering all of the features, which not only reduces the feature vector elements but also increases the computing performance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdennadher, S., Marte, M.: University Course Timetabling Using Constraint Handling Rules. Appl. Artif. Intell. 14, 311–325 (2000)Google Scholar
  2. 2.
    Abramson, D.: Constructing School Timetables using Simulated Annealing: Sequential and Parallel Algorithms. Manage. Sci. 37, 98–113 (1991)Google Scholar
  3. 3.
    Abramson, D.: Simulated Annealing Cooling Schedules for the School Timetabling Problem. Asia-Pacific J. Oper. Res. 16, 1–22 (1999)Google Scholar
  4. 4.
    Amintoosi, M., Sadooghi Yazdi, H., Haddadnia, J.: Fuzzy Student Sectioning. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 421–425. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Asmuni, H., Burke, E.K., Garibaldi, J.M.: Fuzzy Multiple Ordering Criteria for Examination Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 51–66. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Aubin, J., Ferland, J.A.: A Large Scale Timetabling Problem. Comput. Oper. Res. 16, 67–77 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Banks, D., Beek, P., Meisels, A.: Heuristic Incremental Modeling Approach to Course Timetabling. In: Proc. 12th Canadian Conf. on Artif. Intell., pp. 16–29 (1998)Google Scholar
  8. 8.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)zbMATHGoogle Scholar
  9. 9.
    Boizumault, P., Gu’eret, C., Jussien, N.: Efficient Labeling and Constraint Relaxation for Solving Timetabling Problems. In: Proc. Workshop on Constraint Languages and Their Use in Problem Modeling. International Logic Programming Symposium, pp. 116–130 (1994)Google Scholar
  10. 10.
    Burke, E.K., Elliman, D.G., Weare, R.F.: Extensions to a University Exam Timetabling System. In: Proc. IJCAI 1993 Workshop on Knowledge-Based Production, Planning, Scheduling and Control, pp. 42–48 (1993)Google Scholar
  11. 11.
    Burke, E.K., Elliman, D.G., Weare, R.F.: A University Timetabling System based on Graph Colouring and Constraint Manipulation. J. Res. Comput. Educ. 27, 1–18 (1994)Google Scholar
  12. 12.
    Burke, E.K., Elliman, D.G., Weare, R.F.: The Automation of the Timetabling Process in Higher Education. J. Educ. Technol. Syst. 23, 257–266 (1995)Google Scholar
  13. 13.
    Burke, E.K., Elliman, D.G., Weare, R.F.: Specialised Recombinative Operators for Timetabling Problems. In: Fogarty, T.C. (ed.) AISB-WS 1995. LNCS, vol. 993, pp. 75–85. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Burke, E.K., Newall, J.P.: A Multi-Stage Evolutionary Algorithm for the Timetable Problem. IEEE Trans. on Evolutionary Computation 3, 63–74 (1999)CrossRefGoogle Scholar
  15. 15.
    Burke, E.K., Newall, J.P., Weare, R.F.: Initialization Strategies and Diversity in Evolutionary Timetabling. Evol. Comput. 6, 81–103 (1998)CrossRefGoogle Scholar
  16. 16.
    Carter, W.M.: A comprehensive course timetabling and student scheduling system at the University of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 64–82. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Corne, D., Ross, P., Fang, H.L.: Fast Practical Evolutionary Timetabling. In: Fogarty, T.C. (ed.) AISB-WS 1994. LNCS, vol. 865, pp. 250–263. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    Erben, W.: A Grouping Genetic Algorithm for Graph Colouring and Exam Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 397–421. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Erben, W., Keppler, J.: A genetic algorithm solving a weekly course-timetabling problem. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 198–211. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Fang, H.: Genetic Algorithms in Timetabling and Scheduling. Ph.D. Dissertation. Department of Artificial Intelligence, University of Edinburgh (1994)Google Scholar
  21. 21.
    Goltz, H.J., Küchler, G., Matzke, D.: Constraint-Based Timetabling for Universities. In: Proc. INAP 1998, 11th Int. Conf. on Applications of Prolog, pp. 75–80 (1998)Google Scholar
  22. 22.
    Haddadnia, J., Ahmadi, M.: A Fuzzy Hybrid Learning Algorithm for Radial Basis Function Neural Network with Application in Human Face Recognition. Pattern Recognition 36, 1187–1202 (2003)zbMATHCrossRefGoogle Scholar
  23. 23.
    Henz, M., Wurtz, J.: Constraint-Based Timetabling—A Case Study. Appl. Artif. Intell. 10, 439–453 (1996)CrossRefGoogle Scholar
  24. 24.
    Hertz, A.: Tabu Search for Large Scale Timetabling Problems. Eur. J. Oper. Res. 54, 39–47 (1991)zbMATHCrossRefGoogle Scholar
  25. 25.
    Laporte, G., Desroches, S.: The Problem of Assigning Students to Course Sections in a Large Engineering School. Comput. Oper. Res. 13, 387–394 (1986)CrossRefGoogle Scholar
  26. 26.
    Mausser, H., Magazine, M.J., Moore, J.B.: Application of an Annealed Neural Network to a Timetabling Problem. INFORMS J. Comput. 8, 103–117 (1996)zbMATHCrossRefGoogle Scholar
  27. 27.
    Muller, T., Rudova, H.: Minimal Perturbation Problem in Course Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 283–304. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Newall, J.P.: Hybrid Methods for Automated Timetabling, Ph.D. Dissertation. Department of Computer Science, University of Nottingham, UK (1999)Google Scholar
  29. 29.
    Paechter, B., Luchian, H., Petriuc, M.: Two Solutions to the General Timetable Problem Using Evolutionary Methods. In: Proc. 1st IEEE Conf. on Evolutionary Computation, pp. 300–305 (1994)Google Scholar
  30. 30.
    Ross, P., Corne, D., Fang, H.L.: Successful Lecture Timetabling with Evolutionary Algorithms. In: Eiben, A.E., Manderick, B., Ruttkay, Z. (eds.) Applied Genetic and other Evolutionary Algorithms: Proc. ECAI 1994 Workshop. Springer, Berlin (1995)Google Scholar
  31. 31.
    Rowski, B.L., Bezdek, J.C.: C-Means Clustering with the L1 and L ∞  Norms. IEEE Trans. Syst., Man Cybernet. 21, 545–554 (1991)CrossRefGoogle Scholar
  32. 32.
    Rudova, H., Murray, K.: University Course Timetabling with Soft Constraints. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 73–89. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Schaerf, A.: Tabu Search Techniques for Large High-School Timetabling Problems. Technical Report CS-R9611. CWI, Amsterdam, The Netherlands (1996)Google Scholar
  34. 34.
    Schaerf, A.: Local Search Techniques for Large High School Timetabling Problems. IEEE Trans. Syst., Man Cybernet. A 29, 367–377 (1999)CrossRefGoogle Scholar
  35. 35.
    Selim, S.M.: Split Vertices in Vertex Colouring and Their Application in Developing a Solution to the Faculty Timetable Problem. Comput. J. 31, 76–82 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Socha, K., Knowles, J., Sampels, M.: A MAX-MIN Ant System for University Course Timetabling Problem. In: Ant Algorithms Third International Workshop, pp. 1–13. Springer, Heidelberg (2002)Google Scholar
  37. 37.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic, New York (1999)Google Scholar
  38. 38.
    Willemen, R.J.: School Timetable Construction, Algorithms and Complexity, Ph.D. Dissertation. Technische Universiteit Eindhoven (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mahmood Amintoosi
    • 1
  • Javad Haddadnia
    • 2
  1. 1.Mathematics DepartmentSabzevar Teacher Training UniversityIran
  2. 2.Engineering DepartmentSabzevar Teacher Training UniversityIran

Personalised recommendations