Distributed Choice Function Hyper-heuristics for Timetabling and Scheduling

  • Prapa Rattadilok
  • Andy Gaw
  • Raymond S. K. Kwan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3616)


This paper investigates an emerging class of search algorithms, in which high-level domain independent heuristics, called hyper-heuristics, iteratively select and execute a set of application specific but simple search moves, called low-level heuristics, working toward achieving improved or even optimal solutions. Parallel architectures have been designed and evaluated. Results based on a university timetabling problem show an important relationship between performance, algorithm software and hardware implementation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramson, D.: Constructing School Timetables using Simulated Annealing: Sequential and Parallel Algorithms. Manage. Sci. 37, 98–113 (1991)CrossRefGoogle Scholar
  2. 2.
    Abramson, D., Abela, J.: A Parallel Genetic Algorithm for Solving the School Timetabling Problem. In: Proc. 15th Australian Computer Science Conference (ACSC-15), vol. 14, pp. 1–11 (1992)Google Scholar
  3. 3.
    Ayob, M., Kendall, G.: A Monte Carlo Hyper-heuristic To Optimise Component Placement Sequencing For Multi Head Placement Machine. In: Proc. Int. Conf. on Intelligent Technologies (InTech 2003), Chiang Mai, Thailand, December 17–19, pp. 132–141 (2003)Google Scholar
  4. 4.
    Bullnheimer, B., Kotsis, G., Strauss, C.: Parallelization Strategies for the Ant System. In: High Performance Algorithms and Software in Nonlinear Optimization. Applied Optimization Series, vol. 24, pp. 87–100. Kluwer, Dordrecht (1998)Google Scholar
  5. 5.
    Burke, E.K., Dror, M., Petrovic, S., Qu, R.: Hybrid Graph Heuristics within a Hyper-heuristic Approach to Exam Timetabling Problems. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies. Conference Volume of the 9th INFORMS Computing Society Conference, pp. 79–91. Springer, Berlin (2005)Google Scholar
  6. 6.
    Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-Heuristics: An Emerging Direction in Modern Search Technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Meta-Heuristics, ch. 16, pp. 457–474. Kluwer, Dordrecht (2003)Google Scholar
  7. 7.
    Burke, E.K., Kendall, G., Soubeiga, E.: A Tabu Search Hyper-heuristic for Timetabling and Rostering. J. Heuristics 9, 451–470 (2003)CrossRefGoogle Scholar
  8. 8.
    Burke, E.K., Landa Silva, J.D., Soubeiga, E.: Multi-objective Hyper-heuristic Approaches for Space Allocation and Timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Meta-heuristics: Progress as Real Problem Solvers. Springer, Berlin (2005) (to appear)Google Scholar
  9. 9.
    Burke, E.K., MacCarthy, B.L., Petrovic, S., Qu, R.: Knowledge Discovery in Hyper-heuristic Using Case-based Reasoning on Course Timetabling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 276–287. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Burke, E.K., Meisels, A., Petrovic, S., Qu, R.: A Graph-Based Hyper Heuristic for Timetabling Problems. Eur. J. Oper. Res. (2005) (accepted for publication)Google Scholar
  11. 11.
    Burke, E.K., Newall, J.P.: Solving Examination Timetabling Problems through Adaption of Heuristic Orderings. Ann. Oper. Res. 129, 107–134 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cantu-Paz, E.: A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles, Reseaux Syst. Repartis 10, 141–171 (1998)Google Scholar
  13. 13.
    Cowling, P., Kendall, G., Han, L.: An Investigation of a Hyperheuristic Genetic Algorithm Applied to a Trainer Scheduling Problem. In: Proc. Congress on Evolutionary Computation, CEC 2002, Honolulu, Hawaii, May 12–17, pp. 1185–1190 (2002)Google Scholar
  14. 14.
    Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Cowling, P., Kendall, G., Soubeiga, E.: A Parameter-Free Hyperheuristic for Scheduling a Sales Summit. In: Proc. 4th Metaheuristics Int. Conf., MIC 2001, Porto, Portugal, pp. 127–131 (2001)Google Scholar
  16. 16.
    Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: A Tool for Rapid Prototyping in Scheduling and Optimisation. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 1–10. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    De Falco, I., Del Balio, R., Tarantino, E.: Solving the Mapping Problem by Parallel Tabu Search. Technical Report. Instituto per la Ricerca sui Sistemi Informatici Paralli, Italy (1996)Google Scholar
  18. 18.
    Han, L., Kendall, G.: Guided Operators for a Hyper-Heuristic Genetic Algorithm. In: Gedeon, T(T.) D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 807–820. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Han, L., Kendall, G.: Investigation of a Tabu Assisted Hyper-Heuristic Genetic Algorithm. In: Proc. Congress on Evolutionary Computation, CEC 2003, Canberra, Australia, vol. 3, pp. 2230–2237 (2003)Google Scholar
  20. 20.
    Kendall, G., Mohd Hussin, N.: An Investigation of a Tabu Search Based Hyper-heuristic for Examination Timetabling. In: Kendall, G., Burke, E., Petrovic, S., Gendreau, M. (eds.) Multi-disciplinary Scheduling: Theory and Applications I (MISTA 2003) Selected Papers, pp. 309–328. Springer, Berlin (2005)Google Scholar
  21. 21.
    Kendall, G., Mohd Hussin, N.: Tabu Search Hyper-heuristic Approach to the Examination Timetabling Problem at the MARA University of Technology. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 270–293. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Petrovic, S., Qu, R.: Case-Based Reasoning as a Heuristic Selector in a Hyper-Heuristic for Course Timetabling Problems. In: Proc. Knowledge-Based Intelligent Information Engineering Systems and Allied Technologies, vol. 82, pp. 336–340 (2002)Google Scholar
  23. 23.
    Randall, M., Abramson, D.: A General Parallel Tabu Search Algorithm for Combinatorial Optimisation Problems. In: Proc. 1999 Parallel and Real Time Conference, Melbourne, Australia, pp. 68–79 (1999)Google Scholar
  24. 24.
    Ross, P., Marín-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1295–1306. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Ross, P., Schulenburg, S., Marín-Blázquez, J.G., Hart, E.: Hyper-heuristics: Learning to Combine Simple Heuristics in Bin-Packing Problems. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2002), New York, pp. 942–948 (2000)Google Scholar
  26. 26.
    Socha, K., Knowles, J., Sampels, M.: A Max–Min Ant System for the University Course Timetabling Problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 1–13. Springer, Heidelberg (2002) (Also Technical Report TR/IRIDIA/2002-18)CrossRefGoogle Scholar
  27. 27.
    Soubeiga, E.: Development and Application of Hyperheuristics to Personnel Scheduling, Ph.D Thesis. University of Nottingham (2003)Google Scholar
  28. 28.
    Terashima-Marin, H., Ross, P.M., Valenzuela-Rendon, M.: Evolution of Constraint Satisfaction Strategies in Examination Timetabling. In: Banzhaf, W., et al. (eds.) Proc. Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 635–642. Morgan Kaufmann, San Mateo (1999)Google Scholar
  29. 29.
  30. 30.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Prapa Rattadilok
    • 1
  • Andy Gaw
    • 1
  • Raymond S. K. Kwan
    • 1
  1. 1.School of ComputingUniversity of LeedsUK

Personalised recommendations