Advertisement

Fuzzy Multiple Heuristic Orderings for Examination Timetabling

  • Hishammuddin Asmuni
  • Edmund K. Burke
  • Jonathan M. Garibaldi
  • Barry McCollum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3616)

Abstract

In this paper, we address the issue of ordering exams by simultaneously considering two separate heuristics using fuzzy methods. Combinations of two of the following three heuristic orderings are employed: largest degree, saturation degree and largest enrolment. The fuzzy weight of an exam is used to represent how difficult it is to schedule. The decreasingly ordered exams are sequentially chosen to be assigned to the last slot with least penalty cost value while the feasibility of the timetable is maintained throughout the process. Unscheduling and rescheduling exams is performed until all exams are scheduled. The proposed algorithm has been tested on 12 benchmark examination timetabling data sets and the results show that this approach can produce good quality solutions. Moreover, there is significant potential to extend the approach by including a larger range of heuristics.

Keywords

Membership Function Time Slot Fuzzy Rule Fuzzy Model Saturation Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abboud, N., Inuiguichi, M., Sakawa, M., Uemura, Y.: Manpower Allocation Using Genetic Annealing. Eur. J. Oper. Res. 111, 405–420 (1998)Google Scholar
  2. 2.
    Arani, T., Lotfi, V.: A Three Phased Approach to Final Exam Scheduling. IIE Trans. 21, 86–96 (1989)Google Scholar
  3. 3.
    Meyer Aufm Hofe, H.: Solving Rostering Tasks by Generic Methods for Constraint Optimization. Int. J. Found. Comput. Sci. 12, 671–693 (2001)Google Scholar
  4. 4.
    Bardadym, V.A.: Computer Aided School and University Timetabling: The New Wave. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 22–45. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Boizumault, P., Delon, Y., Peridy, L.: Constraint Logic Programming for Examination Timetabling. J. Logic Programm. 26, 217–233 (1996)Google Scholar
  6. 6.
    Brailsford, S.C., Potts, C.N., Smith, B.M.: Constraint Satisfaction Problems: Algorithms and Applications. Eur. J. Oper. Res. 119, 557–581 (1999)Google Scholar
  7. 7.
    Burke, E.K., Bykov, Y., Newall, J., Petrovic, S.: A Time-Predefined Local Search Approach to Exam Timetabling Problems. IIE Trans. 36, 509–528 (2004)Google Scholar
  8. 8.
    Burke, E.K., Bykov, Y., Petrovic, S.: A Multicriteria Approach to Examination Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 118–131. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Burke, E.K., de Werra, D., Kingston, J.: Applications in Timetabling. In: Handbook of Graph Theory, pp. 445–474. Chapman and Hall/CRC Press, London (2003)Google Scholar
  10. 10.
    Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination Timetabling in British Universities—A Survey. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 76–90. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Burke, E.K., Elliman, D.G., Weare, R.F.: A Hybrid Genetic Algorithm for Highly Constrained Timetabling Problems. In: Proceedings of the 6th International Conference on Genetic Algorithms (ICGA 1995), Pittsburgh, PA, pp. 605–610. Morgan Kaufmann, San Francisco (1995)Google Scholar
  12. 12.
    Burke, E.K., Jackson, K., Kingston, J.H., Weare, R.F.: Automated University Timetabling: The State of the Art. Comput. J. 40, 565–571 (1997)Google Scholar
  13. 13.
    Burke, E.K., Meisels, A., Petrovic, S., Qu, R.: A Graph-Based Hyper Heuristic for Timetabling Problems. Eur. J. Oper. Res (2005) (to appear)Google Scholar
  14. 14.
    Burke, E.K., Newall, J.P.: Enhancing Timetable Solutions with Local Search Methods. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 195–206. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Burke, E.K., Newall, J.P.: Solving Examination Timetabling Problems Through Adaption of Heuristic Orderings. Ann. Oper. Res. 129, 107–134 (2004)Google Scholar
  16. 16.
    Burke, E.K., Petrovic, S.: Recent Research Directions in Automated Timetabling. Eur. J. Oper. Res. 140, 266–280 (2002)Google Scholar
  17. 17.
    Burke, E.K., Petrovic, S., Qu, R.: Case Based Heuristic Selection for Timetabling Problems. J. Scheduling (2005) (to appear)Google Scholar
  18. 18.
    Burke, E.K., Ross, P. (eds.): PATAT 1995. LNCS, vol. 1153. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Caramia, M., Dell’Olmo, P., Italiano, G.F.: New Algorithms for Examination Timetabling. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Carter, M.W.: A Survey of Practical Applications of Examination Timetabling Algorithms. Oper. Res. 34, 193–202 (1986)Google Scholar
  21. 21.
    Carter, M.W., Laporte, G.G., Lee, S.Y.: Examination Timetabling: Algorithmic Strategies and Applications. J. Oper. Res. Soc. 47, 373–383 (1996)Google Scholar
  22. 22.
    Carter, M.W., Laporte, G.G.: Recent Development in Practical Examination Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)Google Scholar
  23. 23.
    Casey, S., Thompson, J.: GRASPing the Examination Scheduling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 232–244. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Cox, E., O’Hagen, M.: The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using and Maintaining Fuzzy Systems. AP Professional, Cambridge (1998)Google Scholar
  25. 25.
    Dahal, K.P., Aldridge, C.J., McDonald, J.R.: Generator Maintenance Scheduling Using a Genetic Algorithm with a Fuzzy Evaluation Function. Fuzzy Sets and Systems 102, 21–29 (1999)Google Scholar
  26. 26.
    Davenport, A.J., Tsang, E.P.K.: Solving Constraint Satisfaction Sequencing Problems by Iterative Repair. In: 1st Int. Conf. on the Practical Application of Constraint Technologies and Logic Programming (PACLP 1999), pp. 345–357 (1999)Google Scholar
  27. 27.
    De Werra, D.: An Introduction to Timetabling. Eur. J. Oper. Res. 19, 151–162 (1985)Google Scholar
  28. 28.
    Deris, S., Omatu, S., Ohta, H., Saad, P.: Incorporating Constraint Propagation in Genetic Algorithm for University Timetabling Planning. Eng. Appl. Artif. Intell. 12, 241–253 (1999)Google Scholar
  29. 29.
    Di Gaspero, L., Schaerf, A.: Tabu Search Techniques for Examination Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building University Timetables Using Constraint Logic Programming. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 130–145. Springer, Heidelberg (1996)Google Scholar
  31. 31.
    Li, J., Kwan, R.S.K.: A Fuzzy Genetic Algorithm for Driver Scheduling. Eur. J. Oper. Res. 147, 334–344 (2003)zbMATHCrossRefGoogle Scholar
  32. 32.
    Lim, M.H., Rahardja, S., Gwee, B.H.: A GA Paradigm for Learning Fuzzy Rules. Fuzzy Sets and Systems 82, 177–186 (1996)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Lotfi, V., Cerveny, R.: A Final Exam-Scheduling Package. J. Oper. Res. Soc. 42, 205–216 (1991)Google Scholar
  34. 34.
    Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A Hybrid Algorithm for Examination Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  35. 35.
    Petrovic, S., Burke, E.K.: University Timetabling. In: The Handbook of Scheduling: Algorithms, Models, and Performance Analysis, ch. 45. CRC Press, Boca Raton (2004)Google Scholar
  36. 36.
    Petrovic, S., Bykov, Y.: A Multiobjective Optimisation Technique for Exam Timetabling Based on Trajectories. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 179–192. Springer, Heidelberg (2003)Google Scholar
  37. 37.
    Petrovic, S., Patel, V., Yang, Y.: University Timetabling with Fuzzy Constraints. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  38. 38.
    Sazonov, E.S., Klinkhachorn, P., Gangarao, H.V.S., Halabe, U.B.: Fuzzy Logic Expert System for Automated Damage Detection from Changes in Strain Energy Mode Shapes. Non-destructive Testing and Evaluation 18, 1–20 (2002)Google Scholar
  39. 39.
    Schaerf, A.: A Survey of Automated Timetabling. Artif. Intell. Rev. 13, 87–127 (1999)Google Scholar
  40. 40.
    Teodorovic, D., Lucic, P.: A Fuzzy Set Theory Approach to the Aircrew Rostering Problem. Fuzzy Sets and Systems 95, 261–271 (1998)Google Scholar
  41. 41.
    Thompson, J.M., Dowsland, K.A.: A Robust Simulated Annealing Based Examination Timetabling System. Comput. Oper Res. 25, 637–648 (1998)Google Scholar
  42. 42.
    Yang, Y., Petrovic, S.: A Novel Similarity Measure for Heuristic Selection in Examination Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  43. 43.
    Zadeh, L.A.: Fuzzy Sets. Inform. Control 8, 338–353 (1965)Google Scholar
  44. 44.
    Zimmerman, H.J.: Fuzzy Set Theory and Its Applications, 3rd edn. Kluwer, Dordrecht (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hishammuddin Asmuni
    • 1
  • Edmund K. Burke
    • 1
  • Jonathan M. Garibaldi
    • 1
  • Barry McCollum
    • 2
  1. 1.School of Computer Science and Information TechnologyUniversity of NottinghamNottinghamUK
  2. 2.School of Computer ScienceQueen’s University BelfastBelfastUK

Personalised recommendations