Examination Timetabling with Fuzzy Constraints

  • Sanja Petrovic
  • Vijay Patel
  • Yong Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3616)


The aim of this paper is to consider flexible constraint satisfaction in timetabling problems. The research is carried out in the context of university examination timetabling. Examination timetabling is subject to two types of constraints: hard constraints that must not be violated, and soft constraints that often have to be violated to some extent. Usually, an objective function is introduced to measure the satisfaction of soft constraints in the solution by summing up the number of students involved in the violation of the constraint.

In existing timetabling models the binary logic strategy is employed to handle the satisfaction of the constraints, i.e. a constraint is either satisfied or not. However, there are some constraints that are difficult to evaluate using the binary logic: for example, the constraint that large exams should be scheduled early in the timetable. Fuzzy IF–THEN rules are defined to derive the satisfaction degree of this constraint, where both the size of the exam and the time period that the exams are scheduled in are expressed using the linguistic descriptors Small, Medium and Large, and Early, Middle and Late, respectively. In a similar way, the constraint that students should have enough break between two exams is modelled. A number of memetic algorithms with different characteristics are developed where corresponding fitness functions aggregate the satisfaction degrees of both fuzzy constraints. The proposed approach is tested on real-world benchmark problems and the results obtained are discussed.


Membership Function Fuzzy Rule Linguistic Term Memetic Algorithm Soft Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asmuni, H., Burke, E.K., Garibaldi, J.: Fuzzy Multiple Ordering Criteria for Examination Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 51–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Brelaz, D.: New Methods to Color the Vertices of a Graph. Commun. ACM 22, 251–256 (1979)Google Scholar
  3. 3.
    Burke, E.K., Petrovic, S., Qu, R.: Case Based Heuristic Selection for Timetabling Problems. J. Scheduling (2006) (accepted for publication)Google Scholar
  4. 4.
    Burke, E.K., Bykov, Y., Newall, J.P., Petrovic, S.: A Time-Predefined Local Search Approach to Exam Timetabling Problems. IIE Trans. on Oper. Eng. 36, 509–528 (2004)Google Scholar
  5. 5.
    Burke, E.K., Kingston, J., De Werra, D.: Applications to Timetabling. Section 5.6. In: Gross, J., Yellen, J. (eds.) Handbook of Graph Theory., pp. 445–474. Chapman and Hall/CRC Press, London (2004)Google Scholar
  6. 6.
    Burke, E.K., Landa, J.D.: Design of Memetic Algorithms for Scheduling and Timetabling Problems. In: Krasnogor, N., Hart, W., Smith, J. (eds.) Recent Advances in Memetic Algorithms and Related Search Technologies, pp. 289–312. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Burke, E.K., Newall, J.P.: Solving Examination Timetabling Problems through Adaptation of Heuristic Orderings. Ann. Oper. Res. 129, 107–134 (2004)Google Scholar
  8. 8.
    Burke, E.K., Trick, M.A. (eds.): PATAT 2004. LNCS, vol. 3616. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Burke, E.K., Kendall, G., Soubeiga, E.: A Tabu Search Hyper-heuristic for Timetabling and Rostering. J. Heuristics 9, 451–470 (2003)Google Scholar
  10. 10.
    Burke, E.K., Petrovic, S.: Recent Research Directions in Automated Timetabling. Eur. J. Oper. Res. 140, 266–280 (2002)Google Scholar
  11. 11.
    Burke, E., Erben, W. (eds.): PATAT 2000. LNCS, vol. 2079. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  12. 12.
    Burke, E.K., Bykov, Y., Petrovic, S.: A Multicriteria Approach to Examination Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 118–131. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Burke, E.K., Newall, J.P.: A Multi-Stage Evolutionary Algorithm for the Timetable Problem. IEEE Trans. on Evol. Comput. 3, 63–74 (1999)CrossRefGoogle Scholar
  14. 14.
    Burke, E.K., Newall, J.P., Weare, R.F.: Initialisation Strategies and Diversity in Evolutionary Timetabling. Evol. Comput. 6, 81–103 (1998)CrossRefGoogle Scholar
  15. 15.
    Burke, E.K., Ross, P. (eds.): PATAT 1995. LNCS, vol. 1153. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Burke, E.K., Newall, J.P., Weare, R.F.: A Memetic Algorithm for University Exam Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Burke, E.K., Elliman, D.G., Ford, P., Weare, R.F.: Examination Timetabling in British Universities—A Survey. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 76–92. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Carter, M.W., Laporte, G., Lee, S.Y.: Examination Timetabling: Algorithmic Strategies and Applications. J. Oper. Res. Soc. 47, 373–383 (1996)zbMATHGoogle Scholar
  19. 19.
    Di Gaspero, L., Schaerf, A.: Tabu Search Techniques for Examination Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Klir, G., Folger, T.: Fuzzy Sets, Uncertainty, and Information. Prentice-Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  21. 21.
    Landa Silva, J.D., Burke, E.K., Petrovic, S.: An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling. In: Gandibleux, X., Sevaux, M., Sorensen, K., T’Kindt, V. (eds.) MetaHeuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 91–129. Springer, Berlin (2004)CrossRefGoogle Scholar
  22. 22.
    Laporte, G., Desroches, S.: Examination Timetabling by Computer. Comput. Oper. Res. 11, 351–360 (1984)CrossRefGoogle Scholar
  23. 23.
    Meyer auf’m Hofe, H.: Solving Rostering Tasks as Constraint Optimization. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 191–212. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Moscato, P., Norman, M.: A “Memetic” Approach for the Travelling Salesman Problem—Implementation of a Computational Ecology for Combinatorial Optimisation on Message Passing Systems. In: Proceedings of the International Conference on Parallel Computing and Transputer Applications, pp. 177–186. IOS Press, Amsterdam (1992)Google Scholar
  25. 25.
    Negnevitsky, M.: Artificial Intelligence—A Guide to Intelligent Systems. Addison-Wesley, Reading (2002)Google Scholar
  26. 26.
    Paquete, L.F., Fonseca, C.M.: A Study of Examination Timetabling with Multiobjective Evolutionary Algorithms. In: Proceedings of 4th Metaheuristic International Conference, MIC 2001, Porto, pp. 149–154 (2001)Google Scholar
  27. 27.
    Pedrycz, W., Gowide, F.: An Introduction to Fuzzy Sets—Analysis and Design. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  28. 28.
    Petrovic, S., Yang, Y., Dror, M.: Case-based Initialisation of Metaheuristics for Examination Timetabling. In: Kendall, G., Burke, E., Petrovic, S., Gendreau, M. (eds.) Multidisciplinary Scheduling Theory and Applications, pp. 289–308. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Petrovic, S., Burke, E.: Educational Timetabling. In: Leung, J. (ed.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis, ch. 45, pp. 45.1–45.23. Chapman and Hall/CRC Press, London (2004)Google Scholar
  30. 30.
    Petrovic, S., Bykov, Y.: A Multiobjective Optimisation Technique for Exam Timetabling Based on Trajectories. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 179–192. Springer, Heidelberg (2003)Google Scholar
  31. 31.
    Prade, H.: Computational Approach to Approximate and Plausible Reasoning. IEEE Trans. on Pattern Analysis and Machine Intelligence 7, 260–283 (1985)zbMATHCrossRefGoogle Scholar
  32. 32.
    Ross, P., Hart, E., Corne, E.D.: Some Observations about GA based Timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 115–129. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  33. 33.
    Ruspini, E., Bonissone, P., Pedrycz, W. (eds.): Handbook of Fuzzy Computation. Institute of Physics Publishing, Bristol (1998)Google Scholar
  34. 34.
    Slowinski, R., Hapke, M. (eds.): Scheduling Under Fuzziness. Physica, Heidelberg (2000)Google Scholar
  35. 35.
    Thompson, J.M., Dowsland, K.A.: Variants of Simulated Annealing for the Examination Timetabling Problem. Ann. Oper. Res. 63, 105–128 (1996)Google Scholar
  36. 36.
    White, G.M., Xie, B.S., Zonjic, S.: Using Tabu Search with Longer-term Memory and Relaxation to Create Examination Timetables. Eur. J. Oper. Res. 153, 80–91 (2004)Google Scholar
  37. 37.
    Wren, A.: Scheduling, Timetabling and Rostering—A Special Relationship? In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 46–75. Springer, Heidelberg (1996)Google Scholar
  38. 38.
    Yang, Y., Petrovic, S.: A Novel Similarity Measure for Heuristic Selection in Examination Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 377–396. Springer, Heidelberg (2005) (also in this volume, pp. 245–267) CrossRefGoogle Scholar
  39. 39.
    Zadeh, L.A.: Fuzzy Sets. Inform. Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Zadeh, L.A.: Theory of Approximate Reasoning. In: Hayes, J., Michie, D., Mikulich, L. (eds.) Machine Intelligence, vol. 9, pp. 149–194. Halstead Press, New York (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sanja Petrovic
    • 1
  • Vijay Patel
    • 1
  • Yong Yang
    • 1
  1. 1.School of Computer Science and Information TechnologyThe University of NottinghamUK

Personalised recommendations