Advertisement

A Novel Similarity Measure for Heuristic Selection in Examination Timetabling

  • Yong Yang
  • Sanja Petrovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3616)

Abstract

Metaheuristic approaches to examination timetabling problems are usually split into two phases: an initialisation phase in which a sequential graph colouring heuristic is employed to construct an initial solution and an improvement phase in which the initial solution is gradually improved. Different hybridisations of metaheuristics with sequential heuristics are known to lead to solutions of different quality. A Case Based Reasoning (CBR) methodology has been developed for selecting an appropriate sequential construction heuristic for hybridisation with the Great Deluge metaheuristic. In this paper we propose a new similarity measure between two timetabling problems that is based on fuzzy sets. The experiments were performed on a number of real-world benchmark problems and the results were also compared with other state-of-the-art methods. The results obtained show the effectiveness of the developed CBR system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burke, E.K., Bykov, Y., Newall, J.P., Petrovic, S.: A Time-Predefined Local Search Approach to Exam Timetabling Problems. IIE Trans. Oper. Eng. 36, 509–528 (2004)Google Scholar
  2. 2.
    Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic, S., Qu, R.: Similarity Measures For Exam Timetabling Problems. In: Proc. 1st Multidisciplinary International Conference on Scheduling: Theory and Applications, pp. 120–136 (2003)Google Scholar
  3. 3.
    Burke, E.K., Dror, M., Petrovic, S., Qu, R.: Hybrid Graph Heuristics in a Hyper-Heuristic Approach to Exam Timetabling. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimization and Decision Technologies, pp. 79–92. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination Timetabling in British Universities—A Survey. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 76–92. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-Heuristics: An Emerging Direction in Modern Search Technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Meta-heuristics, ch. 16, pp. 457–474. Kluwer, Dordrecht (2003)Google Scholar
  6. 6.
    Burke, E.K., Kendall, G., Soubeiga, E.: A Tabu Search Hyper-heuristic for Timetabling and Rostering. J. Heuristics 9, 451–470 (2003)CrossRefGoogle Scholar
  7. 7.
    Burke, E., Kingston, J., De Werra, D.: Applications to Timetabling. Section 5.6. In: Gross, J., Yellen, J. (eds.) Handbook of Graph Theory, pp. 445–474. Chapman and Hall/CRC Press, London (2004)Google Scholar
  8. 8.
    Burke, E.K., Landa, J.D.: Design of Memetic Algorithms for Scheduling and Timetabling Problems. In: Krasnogor, N., Hart, W., Smith, J. (eds.) Recent Advances in Memetic Algorithms and Related Search Technologies, pp. 289–312. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Burke, E.K., MacCarthy, B., Petrovic, S., Qu, R.: Structured Cases in CBR—Re-using and Adapting Cases for Time-Tabling Problems. Knowledge-Based Syst. 13, 159–165 (2000)CrossRefGoogle Scholar
  10. 10.
    Burke, E., MacCarthy, B., Petrovic, S., Qu, R.: Knowledge Discovery in a Hyper-heuristic Using Case-Based Reasoning for Course Timetabling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 276–287. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Burke, E.K., MacCarthy, B., Petrovic, S., Qu, R.: Multiple-Retrieval Case Based Reasoning for Course Timetabling Problems. J. Oper. Res. Soc. (2005) (accepted for publication)Google Scholar
  12. 12.
    Burke, E.K., Meisels, A., Petrovic, S., Qu, R.: A Graph-Based Hyper Heuristic for Timetabling Problems. Eur. J. Oper. Res. (2005) (accepted for publication)Google Scholar
  13. 13.
    Burke, E.K., Newall, J.P., Weare, R.F.: A Memetic Algorithm for University Exam Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Burke, E.K., Newall, J.P.: Enhancing Timetable Solutions with Local Search Methods. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 195–206. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Burke, E.K., Newall, J.P., Weare, R.F.: Initialisation Strategies and Diversity in Evolutionary Timetabling. Evol. Comput. 6, 81–103 (1998)CrossRefGoogle Scholar
  16. 16.
    Burke, E.K., Newell, J.P.: Solving Examination Timetabling Problems Through Adaptation of Heuristic Orderings. Ann. Oper. Res. 129, 107–134 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Burke, E.K., Newell, J.P., Weare, R.F.: A Simple Heuristically Guided Search for the Timetable Problem. In: Proceedings of the International ICSC Symposium on Engineering of Intelligent Systems (University of La Laguna), pp. 574–579. Academic, New York (1998)Google Scholar
  18. 18.
    Burke, E.K., Petrovic, S.: Recent Research Directions in Automated Timetabling. Eur. J. Oper. Res. 140, 266–280 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Burke, E.K., Petrovic, S., Qu, R.: Case Based Heuristic Selection for Timetabling Problems. J. Scheduling (2006) (accepted for publication)Google Scholar
  20. 20.
    Carter, M.W.: A Survey of Practical Applications on Examination Timetabling. Oper. Res. 34, 193–202 (1986)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Carter, M.W., Laporte, G.: Recent Developments in Practical Course Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    Carter, M.W., Laporte, G., Chinneck, J.W.: A General Examination Scheduling System. Interfaces 24, 109–120 (1994)CrossRefGoogle Scholar
  23. 23.
    Carter, M.W., Laporte, G., Lee, S.Y.: Examination Timetabling: Algorithmic Strategies and Applications. J. Oper. Res. Soc. 47, 373–383 (1996)Google Scholar
  24. 24.
    Carter, M.W., Johnson, D.G.: Extended Clique Initialisation in Examination Timetabling. J. Oper. Res. Soc. 52, 538–544 (2001)zbMATHCrossRefGoogle Scholar
  25. 25.
    Casey, S., Thompson, J.: GRASPing the Examination Scheduling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 232–246. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Deng, P.S.: Using Case-Based Reasoning Approach to the Support of Ill-structured Decisions. Eur. J. Oper. Res. 93, 511–521 (1996)zbMATHCrossRefGoogle Scholar
  27. 27.
    Di Gaspero, L., Schaerf, A.: Tabu Search Techniques for Examination Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Dueck, G.: New Optimization Heuristics. J. Comput. Phys. 104, 86–92 (1993)zbMATHCrossRefGoogle Scholar
  29. 29.
    Garey, M.R., Johnson, D.S.: Computers and Intractability a Guide to the Theory of NP-completeness. Freeman, San Francisco (1977)Google Scholar
  30. 30.
    Gendreau, M., Soriano, P., Salvail, L.: Solving the Maximum Clique Problem Using a Tabu Search Approach. Ann. Oper. Res. 41, 385–403 (1993)zbMATHCrossRefGoogle Scholar
  31. 31.
    Johnson, D.: Timetabling University Examinations. J. Oper. Res. Soc. 41, 39–47 (1990)Google Scholar
  32. 32.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  33. 33.
    Laporte, G., Desroches, S.: Examination Timetabling by Computer. Comput. Oper. Res. 11, 351–360 (1984)CrossRefGoogle Scholar
  34. 34.
    Leake, D.B.: CBR in Context: the Present and Future, Case-Based Reasoning: Experiences, Lessons, and Future Directions. AAAI Press/MIT Press, Menlo Park (1996)Google Scholar
  35. 35.
    Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A Hybrid Algorithm for the Examination Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 205–232. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  36. 36.
    Miyashita, K., Sycara, K.: CABINS: A Framework of Knowledge Acquisition and Iterative Revision for Schedule Improvement and Reactive Repair. Artif. Intell. 76, 377–426 (1995)CrossRefGoogle Scholar
  37. 37.
    Petrovic, S., Beddoe, G.R., Berghe, G.V.: Storing and Adapting Repair Experiences in Employee Rostering. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 149–166. Springer, Heidelberg (2003)Google Scholar
  38. 38.
    Petrovic, S., Burke, E.: Educational Timetabling. In: Leung, J. (ed.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis, ch. 45, pp. 45.1–45.23. Chapman and Hall/CRC Press, London (2004)Google Scholar
  39. 39.
    Petrovic, S., Kendall, G., Yang, Y.: A Tabu Search Approach for Graph-Structured Case Retrieval. In: Proc. STarting Artificial Intelligence Researchers Symposium (France), pp. 55–64. IOS Press, Amsterdam (2002)Google Scholar
  40. 40.
    Petrovic, S., Yang, Y., Dror, M.: Case-based Initialisation of Metaheuristics for Examination Timetabling. In: Kendall, G., Burke, E., Petrovic, S., Gendreau, M. (eds.) Multidisciplinary Scheduling Theory and Applications, pp. 289–308. Springer, Berlin (2005)CrossRefGoogle Scholar
  41. 41.
    Petrovic, S., Yang, Y., Dror, M.: Use of Case Based Reasonin. Solving Examination Timetabling Problems. Technical Report NOTTCS-TR-2004-6, University of Nottingham, UK (2004)Google Scholar
  42. 42.
    Schirmer, A.: Case-Based Reasoning and Improved Adaptive Search for Project Scheduling. Naval Res. Log. 47, 201–222 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Schmidt, G.: Case-Based Reasoning for Production Scheduling. Int. J. Product. Econ. 56/7, 537–546 (1998)CrossRefGoogle Scholar
  44. 44.
    Terashima-Marín, H., Ross, P., Valenzuela-Rendón, M.: Evolution of Constraint Satisfaction Strategies in Examination Timetabling. In: Proceedings of the Genetic and Evolutionary Conference, pp. 635–642 (1999)Google Scholar
  45. 45.
    Thompson, J.M., Dowsland, K.A.: Variants of Simulated Annealing for the Examination Timetabling Problem. Ann. Oper. Res. 63, 105–128 (1996)zbMATHCrossRefGoogle Scholar
  46. 46.
    Welsh, D.J.A., Powell, M.B.: An Upper Bound on the Chromatic Number of a Graph and its Application to Timetabling Problems. Comput. J. 10, 85–86 (1967)zbMATHCrossRefGoogle Scholar
  47. 47.
    White, G.M., Xie, B.S., Zonjic, X.: Using Tabu Search With Longer-Term Memory and Relaxation to Create Examination Timetables. Eur. J. Oper. Res. 153, 80–91 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Zadeh, L.A.: Fuzzy Sets. Inform. Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Inform. Sci. 8(9), 199–249, 43–80, respectively (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yong Yang
    • 1
  • Sanja Petrovic
    • 1
  1. 1.School of Computer Science and Information TechnologyThe University of NottinghamUK

Personalised recommendations