Lower Bounds for the Multi-skill Project Scheduling Problem with Hierarchical Levels of Skills

  • Odile Bellenguez
  • Emmanuel Néron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3616)


In this paper, we introduce an extension of the classical Resource-Constrained Project Scheduling Problem: the Multi-skill Project Scheduling Problem. We consider a project made up of activities that must be implemented by a staff: every member of this staff masters one or more skill(s). An activity needs a given amount of each skill with a fixed minimum level of mastering. For each unit of a skill needed, we have to assign an employee who masters the required level of this skill during the whole processing time of the activity. The objective is to minimize the duration of the project, i.e. the makespan. We introduce here two lower bounds used to evaluate the minimum duration.


Tabu Search Hierarchical Level Project Schedule Project Schedule Problem Timetabling Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez-Valdes, R., Martin, G., Tamarit, J.M.: Constructing Good Solutions for a School Timetabling Problem. J. Oper. Res. Soc. 47, 1203–1215 (1996)zbMATHGoogle Scholar
  2. 2.
    Bailey, J.: Optimization and Heuristic Models to Integrate Project Task and Manpower scheduling. Comput. Indust. Eng. 29, 473–476 (1995)CrossRefGoogle Scholar
  3. 3.
    Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability Tests and Time Bound Adjustments for Cumulative Scheduling Problems. Ann. Oper. Res. 92, 305–333 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baptiste, P., Demassey, S.: Tight LP Bounds for Resource Constrained Project Scheduling. OR Spectrum 26, 251–262 (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bellenguez, O., Néron, E.: An Exact Method for Solving the Multi-skill Project Scheduling Problem. In: Operations Research Conference, Tilburg, pp. 97–98 (2004)Google Scholar
  6. 6.
    Bellenguez, O., Néron, E.: Methods for Solving the Multi-skill Project Scheduling Problem. In: 9th Int. Workshop on Project Management and Scheduling, Nancy, pp. 66–69 (2004)Google Scholar
  7. 7.
    Brucker, P., Knust, S.: Lower Bounds for Resource-Constrained Project Scheduling Problems. Eur. J. Oper. Res. 149, 302–313 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The State of the Art of Nurse Rostering. J. Scheduling 7, 441–499 (2004)Google Scholar
  9. 9.
    Dauzère-Pérès, S., Roux, J., Lasserre, J.B.: Multi-resource Shop Scheduling with Resource Flexibility. Eur. J. Oper. Res. 107, 289–305 (1998)Google Scholar
  10. 10.
    Demassey, S., Artigues, C., Michelon, P.: Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project-Scheduling Problem. INFORMS J. Comput. (2003) (in press)Google Scholar
  11. 11.
    Demeulemeester, E., Herroelen, W.: New Benchmark Results for the Resource-Constrained Project Scheduling Problem. Manage. Sci. 43, 1485–1492 (1997)Google Scholar
  12. 12.
    De Reyck, B., Herroelen, W.: The Multi-mode Resource-Constrained Project Scheduling Problem with Generalized Precedence Relations. Eur. J. Oper. Res. 119, 538–556 (1999)Google Scholar
  13. 13.
    Hartmann, S., Drexl, A.: Project Scheduling with Multiple Modes: A Comparison of Exact Algorithms. Networks 32, 283–297 (1998)Google Scholar
  14. 14.
    Haase, K., Latteier, J., Schirmer, A.: The Course Scheduling Problem at the Lufthansa Technical Training. Eur. J. Oper. Res. 110, 441–456 (1998)Google Scholar
  15. 15.
    Hanne, T., Nickel, S.: A Multiobjective Evolutionary Algorithm for Scheduling and Inspection Planning in Software Development Projects. Eur. J. Oper. Res. 167, 663–678 (2005)Google Scholar
  16. 16.
    Josefowska, J., Mika, M., Rozycki, R., Waligora, G., Weglarz, J.: Simulated Annealing for Multi-mode Resource-Constrained Project Scheduling Problem. Ann. Oper. Res. 102, 137–155 (2001)Google Scholar
  17. 17.
    Klein, R.: Project Scheduling with Time-Varying Resource Constraints. Int. J. Prod. Res. 38, 3937–3952 (2000)Google Scholar
  18. 18.
    Kolisch, R., Drexl, A.: Local Search for Non-preemptive Multi-mode Resource-Constrained Project Scheduling Problem. IIE Trans. 29, 987–999 (1997)Google Scholar
  19. 19.
    Kolisch, R., Sprecher, A.: PSPLIB—A Project Scheduling Problem Library. Eur. J. Oper. Res. 96, 205–216 (1997)Google Scholar
  20. 20.
    Kolisch, R., Sprecher, A.: PSPLIB—A Project Scheduling Problem Library (2000),
  21. 21.
    Lopez, P., Erschler, J., Esquirol, P.: Ordonnancement de Tâches sous Contraintes: Une Approche Énergétique. RAIRO-APII 26, 453–481 (1992)Google Scholar
  22. 22.
    Mingozzi, A., Maniezzo, V., Riciardelli, S., Bianco, L.: An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation. Manage. Sci. 44, 714–729 (1998)Google Scholar
  23. 23.
    Özdamar, L.: A Genetic Algorithm Approach to a General Category Project Scheduling Problem. IEEE Trans. on Systems, Man, and Cybernetics (forthcoming)Google Scholar
  24. 24.
    Sprecher, A., Drexl, A.: Multi-mode Resource Constrained Project Scheduling Problem by a Simple, General and Powerful Sequencing Algorithm. Eur. J. Oper. Res. 107, 431–450 (1998)Google Scholar
  25. 25.
    Toroslu, I.: Personnel Assignment Problem with Hierarchical Ordering Constraints. Comput. Indust. Eng, 493–510 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Odile Bellenguez
    • 1
  • Emmanuel Néron
    • 1
  1. 1.Laboratoire d’Informatique de l’Université de ToursToursFrance

Personalised recommendations