Advertisement

Interactively Solving School Timetabling Problems Using Extensions of Constraint Programming

  • Hadrien Cambazard
  • Fabien Demazeau
  • Narendra Jussien
  • Philippe David
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3616)

Abstract

Timetabling problems have been frequently studied due to their wide range of applications. However, they are often solved manually because of the lack of appropriate computer tools. Although many approaches mainly based on local search or constraint programming seem to have been quite successful in recent years, they are often dedicated to specific problems and encounter difficulties in dealing with the dynamic and over-constrained nature of such problems.

We were confronted with such an over-constrained and dynamic problem in our institution. This paper deals with a timetabling system based on constraint programming with the use of explanations to offer a dynamic behaviour and to allow automatic relaxations of constraints. Our tool has successfully answered the needs of the current planner by providing solutions in a few minutes instead of a week of manual design. We present in this paper the techniques used, the results obtained and a discussion on the effects of the automation of the timetabling process.

Keywords

Local Search Constraint Programming Constraint Satisfaction Problem Soft Constraint Hard Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barták, R., Müller, T., Rudová, H.: A New Approach to Modeling and Solving Minimal Perturbation Problems. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 233–249. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Berlandier, P., Neveu, B.: Arc-Consistency for Dynamic Constraint Problems: A RMS Free Approach. In: Proc. ECAI 1994 Workshop on Constraint Satisfaction Issues raised by Practical Applications (1994)Google Scholar
  3. 3.
    Bessière, C.: Arc Consistency in Dynamic Constraint Satisfaction Problems. In: Nat. Conf. on Artificial Intelligence—AAAI 1991 (1991)Google Scholar
  4. 4.
    de Backer, B., Béringer, H.: Intelligent Backtracking for CLP Languages: An Application to CLP(\({\cal R}\)). In: Saraswat, V., Ueda, K. (eds.) ILPS 1991: Proc. Int. Logic Programming Symposium, San Diego, CA, pp. 405–419. MIT Press, Cambridge (1991)Google Scholar
  5. 5.
    Cheng, E., Kruk, S., Lipman, M.: Flow Formulation for the Student Scheduling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 299–309. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Debruyne, R.: Arc-Consistency in Dynamic CSPs is No More Prohibitive. In: 8th Conf. on Tools with Artificial Intelligence (TAI 1996), pp. 299–306 (1996)Google Scholar
  7. 7.
    Debruyne, R., Ferrand, G., Jussien, N., Lesaint, W., Ouis, S., Tessier, A.: Correctness of Constraint Retraction Algorithms. In: FLAIRS 2003: 16th Int. Florida Artificial Intelligence Research Society Conf., St Augustine, FL, pp. 172–176. AAAI Press, Menlo Park (2003)Google Scholar
  8. 8.
    Elkhyari, A.: Outils d’Aide à la Décision Pour les Problèmes d’Ordonnancement Dynamique. Ph.D. Thesis. École des Mines de Nantes, France (2003) (in French)Google Scholar
  9. 9.
    Elkhyari, A., Guéret, C., Jussien, N.: Solving Dynamic Timetabling Problems as Dynamic Resource Constrained Project Scheduling Problems Using New Constraint Programming Tools. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 39–59. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Elkhyari, A., Guéret, C., Jussien, N.: Constraint Programming for Dynamic Scheduling Problems. In: Hiroshi Kise, H. (ed.) ISS 2004 Int. Scheduling Symp., Awaji, Hyogo, Japan. Japan Society of Mechanical Engineers, pp. 84–89 (2004)Google Scholar
  11. 11.
    Elkhyari, A., Guéret, C., Jussien, N.: Stable Solutions for Dynamic Project Scheduling Problems. In: PMS 2004 Int. Workshop on Project Management and Scheduling, Nancy, France, April 2004, pp. 380–384 (2004)Google Scholar
  12. 12.
    Georget, Y., Codognet, P., Rossi, F.: Constraint Retraction in CLP(FD): Formal Framework and Performance Results. Constraints 4, 5–42 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hertz, A.: Tabu Search for Large Scale Timetabling Problems. Eur. J. Oper. Res. 54, 39–47 (1991)zbMATHCrossRefGoogle Scholar
  14. 14.
    Jussien, N.: E-Constraints: Explanation-Based Constraint Programming. In: CP 2001 Workshop on User-Interaction in Constraint Satisfaction, Paphos, Cyprus (December 2001)Google Scholar
  15. 15.
    Jussien, N., Boizumault, P.: Best-First Search for Property Maintenance in Reactive Constraints Systems. In: Int. Logic Programming Symp., Port Jefferson, NY, pp. 339–353. MIT Press, Cambridge (1997)Google Scholar
  16. 16.
    Jussien, N., Lhomme, O.: Local Search with Constraint Propagation and Conflict-Based Heuristics. Artif. Intell. 139, 21–45 (2002)Google Scholar
  17. 17.
    Jussien, N., Ouis, S.: User-Friendly Explanations for Constraint Programming. In: ICLP 2001 11th Workshop on Logic Programming Environments (WLPE 2001) Paphos, Cyprus (December 2001)Google Scholar
  18. 18.
    Müller, T., Rudová, H.: Minimal Perturbation Problem in Course Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 283–303. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Régin, J.-C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: AAAI 1994, 12th Nat. Conf. on Artificial Intelligence, Seattle, WA, pp. 362–367 (1994)Google Scholar
  20. 20.
    Régin, J.-C.: Generalized Arc Consistency for Global Cardinality Constraint. In: AAAI/IAAI, pp. 209–215 (1996)Google Scholar
  21. 21.
    Rochart, G., Jussien, N., Laburthe, F.: Challenging Explanations for Global Constraints. In: CP 2003 Workshop on User-Interaction in Constraint Satisfaction (UICS 2003), pp. 31–43 (2003)Google Scholar
  22. 22.
    Santiago-Mozos, R., Salcedo-Sanz, S., DePrado-Cumplido, M., Bousoño-Calzón, C.: A Two-Phase Heuristic Evolutionary Algorithm for Personalizing Course Timetables: A Case Study in a Spanish University. Comput. Oper. Res. 32, 1761–1776 (2005)Google Scholar
  23. 23.
    Wilson, M., Borning, A.: Hierarchical Constraint Logic Programming. J. Logic Program. 16, 277–318 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hadrien Cambazard
    • 1
  • Fabien Demazeau
    • 2
  • Narendra Jussien
    • 1
  • Philippe David
    • 1
  1. 1.École des Mines de Nantes, LINA CNRSNantes Cedex 3France
  2. 2.ISoft, Chemin de MoulonGif sur YvetteFrance

Personalised recommendations