Advertisement

Graph-Decomposition-Based Frameworks for Subset-Cover Broadcast Encryption and Efficient Instantiations

  • Nuttapong Attrapadung
  • Hideki Imai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3788)

Abstract

We present generic frameworks for constructing efficient broadcast encryption schemes in the subset-cover paradigm, introduced by Naor et.al., based on various key derivation techniques. Our frameworks characterize any instantiation completely to its underlying graph decompositions, which are purely combinatorial in nature. This abstracts away the security of each instantiated scheme to be guaranteed by the generic one of the frameworks; thus, gives flexibilities in designing schemes. Behind these are new techniques based on (trapdoor) RSA accumulators utilized to obtain practical performances.

We then give some efficient instantiations from the frameworks. Our first construction improves the currently best schemes, including the one proposed by Goodrich et.al., without any further assumptions (only pseudo-random generators are used) by some factors. The second instantiation, which is the most efficient, is instantiated based on RSA and directly improves the first scheme. Its ciphertext length is of order O(r), the key size is O(1), and its computational cost is O(n 1/klog2 n) for any (arbitrary large) constant k; where r and n are the number of revoked users and all users respectively. To the best of our knowledge, this is the first explicit collusion-secure scheme in the literature that achieves both ciphertext size and key size independent of n simultaneously while keeping all other costs efficient, in particular, sub-linear in n. The third scheme improves Gentry and Ramzan’s scheme, which itself is more efficient than the above schemes in the aspect of asymptotic computational cost.

Keywords

Broadcast Encryption Revocation Scheme Subset-cover Optimal Key Storage 

References

  1. 1.
    Akl, S.G., Taylor, P.D.: Cryptographic Solution to a Problem of Access Control in a Hierarchy. ACM Transactions on Computer Systems 1(3), 239–248 (1983)CrossRefGoogle Scholar
  2. 2.
    Asano, T.: A Revocation Scheme with Minimal Storage at Receivers. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 433–450. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Kobara, K., Imai, H.: Broadcast Encryption with Short Keys and Transmissions. ACM Workshop on Digital Rights Management (2003)Google Scholar
  4. 4.
    Attrapadung, N., Kobara, K., Imai, H.: Sequential Key Derivation Patterns for Broadcast Encryption and Key Predistribution Schemes. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 374–391. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Benaloh, J., de Mare, M.: One-way accumulators: A decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Boneh, D., Silverberg, A.: Applications of Multilinear Forms to Cryptography. Contemporary Mathematics 324, 71–90 (2003)MathSciNetGoogle Scholar
  7. 7.
    Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption With Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005) (to appear)Google Scholar
  8. 8.
    Chick, G.C., Tavares, S.E.: Flexible Access Control with Master Keys. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 316–322. Springer, Heidelberg (1990)Google Scholar
  9. 9.
    Diestel, R.: Graph theory. In: Graduate texts in mathematics, 2nd edn., vol. 173 (2000)Google Scholar
  10. 10.
    Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Ramzan, Z.: RSA Accumulator Based Broadcast Encryption. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 73–86. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-Based Revocation in Groups of Low-State Devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 511–527. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Jho, N., Hwang, J.Y., Cheon, J.H., Kim, M.H., Lee, D.H., Yoo, E.S.: One-Way Chain Based Broadcast Encryption Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 559–574. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Luby, M., Staddon, J.: Combinatorial Bounds for Broadcast Encryption. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 512–526. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Mihaljevic, M.J.: Key Management Schemes for Stateless Receivers Based on Time Varying Heterogeneous Logical Key Hierarchy. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 137–154. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Star, Z.: An Asymptotic Formula in the Theory of Compositions. Aequationes Math (1976)Google Scholar
  20. 20.
    Wang, P., Ning, P., Reeves, D.S.: Storage-Efficient Stateless Group Key Revocation. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 25–38. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nuttapong Attrapadung
    • 1
  • Hideki Imai
    • 1
  1. 1.Imai Laboratory, Institute of Industrial ScienceUniversity of TokyoMeguro-ku, TokyoJapan

Personalised recommendations