Efficient and Secure Elliptic Curve Point Multiplication Using Double-Base Chains

  • Vassil Dimitrov
  • Laurent Imbert
  • Pradeep Kumar Mishra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3788)


In this paper, we propose a efficient and secure point multiplication algorithm, based on double-base chains. This is achieved by taking advantage of the sparseness and the ternary nature of the so-called double-base number system (DBNS). The speed-ups are the results of fewer point additions and improved formulæ for point triplings and quadruplings in both even and odd characteristic. Our algorithms can be protected against simple and differential side-channel analysis by using side-channel atomicity and classical randomization techniques. Our numerical experiments show that our approach leads to speed-ups compared to windowing methods, even with window size equal to 4, and other SCA resistant algorithms.


Greedy Algorithm Elliptic Curve Elliptic Curve Cryptography Side Channel Attack Elliptic Curve Cryptosystems 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)Google Scholar
  2. 2.
    Berthé, V., Imbert, L.: On converting numbers to the double-base number system. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architecture and Implementations XIV. Proceedings of SPIE, vol. 5559, pp. 70–78. SPIE, San Jose (2004)Google Scholar
  3. 3.
    Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. London Mathematical Society Lecture Note Series, vol. 256. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  4. 4.
    Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography. London Mathematical Society Lecture Note Series, vol. 317. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chevalier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple side-channel analysis: Side-channel atomicity. IEEE Transactions on Computers 53(6), 760–768 (2004)CrossRefGoogle Scholar
  6. 6.
    Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading inversions for multiplications in elliptic curve cryptography. Cryptology ePrint Archive, Report 2003/257 (2003)Google Scholar
  7. 7.
    Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    De Win, E., Bosselaers, S., Vandenberghe, S., De Gersem, P., Vandewalle, J.: A fast software implementation for arithmetic operations in GF(2n). In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 65–76. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponentiation. Information Processing Letters 66(3), 155–159 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Theory and applications of the double-base number system. IEEE Transactions on Computers 48(10), 1098–1106 (1999)CrossRefGoogle Scholar
  11. 11.
    Eisenträger, K., Lauter, K., Montgomery, P.L.: Fast elliptic curve arithmetic and improved Weil pairing evaluation. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 343–354. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Fong, K., Hankerson, D., Lòpez, J., Menezes, A.: Field inversion and point halving revisited. IEEE Transactions on Computers 53(8), 1047–1059 (2004)CrossRefGoogle Scholar
  13. 13.
    Guajardo, J., Paar, C.: Efficient algorithms for elliptic curve cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 342–356. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Hankerson, D., Lòpez Hernandez, J., Menezes, A.: Software implementation of elliptic curve cryptography over binary fields. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  16. 16.
    Itoh, K., Takenaka, M., Torii, N., Temma, S., Kurihara, Y.: Fast implementation of public-key cryptography on a DSP TMS320C6201. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 61–72. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Izu, T., Möller, B., Takagi, T.: Improved elliptic curve multiplication methods resistant against side channel attacks. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 296–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against side channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 280–296. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Izu, T., Takagi, T.: Fast elliptic curve multiplications resistant against side channel attacks. IEICE Transactions Fundamentals E88-A(1), 161–171 (2005)Google Scholar
  20. 20.
    Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve cryptography – an algebraic approach. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  23. 23.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  24. 24.
    Miller, V.S.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  25. 25.
    Tijdeman, R.: On the maximal distance between integers composed of small primes. Compositio Mathematica 28, 159–162 (1974)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vassil Dimitrov
    • 1
    • 2
  • Laurent Imbert
    • 1
    • 2
    • 3
  • Pradeep Kumar Mishra
    • 2
  1. 1.Advanced Technology Information Processing Systems laboratoryUniversity of CalgaryCanada
  2. 2.Centre for Informations Security and CryptographyUniversity of CalgaryCanada
  3. 3.Laboratoire d’Informatique, de Robotique et de Microélectronique de MontpellierCNRS UMR 5506MontpellierFrance

Personalised recommendations