New Improvements of Davies-Murphy Cryptanalysis

  • Sébastien Kunz-Jacques
  • Frédéric Muller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3788)


In this paper, we revisit the famous Davies-Murphy cryptanalysis of DES. First we improve its complexity down to the analysis of 245 chosen plaintexts, by considering 6 distributions instead of 7. The previous improvement of the attack by Biham and Biryukov costed 250 known plaintexts. This new result is better than differential cryptanalysis but slightly worse than linear cryptanalysis. Secondly, we explore the link between this attack and other cryptanalysis techniques, in particular linear cryptanalysis.


False Alarm Round Function Data Encryption Standard Linear Cryptanalysis Data Analysis Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Biham, E.: On Matsui’s Linear Cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Biham, E., Biryukov, A.: An Improvement of Davies’ Attack on DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 461–467. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Full 16-round DES. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    Courtois, N.: Feistel Schemes and Bi-linear Cryptanalysis. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 23–40. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Davies, D., Murphy, S.: Pairs and Triplets of DES S-Boxes. Journal of Cryptology 8(1), 1–25 (1995)zbMATHCrossRefGoogle Scholar
  7. 7.
  8. 8.
    Junod, P.: On the complexity of matsui’s attack. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 199–211. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Knudsen, L., Mathiassen, J.-E.: A Chosen-Plaintext Linear Attack on DES. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 262–272. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Kunz-Jacques, S., Muller, F., Valette, F.: The Davies-Murphy Power Attack. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 451–467. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    National Bureau of Standards (NBS), U.S. FIPS 46, Data Encryption Standard, Federal Information Processing Standards Publication 46 (1977)Google Scholar
  13. 13.
    National Institute of Standards and Technology (NIST). Advanded Encryption Standard (AES) FIPS Publication 197 (November 2001), Available at
  14. 14.
    Pornin, T.: Optimal Resistance Against the Davies and Murphy Attack. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 148–159. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Shimoyama, T., Kaneko, T.: Quadratic Relation of S-box and Its Application to the Linear Attack of Full Round DES. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 200–211. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sébastien Kunz-Jacques
    • 1
  • Frédéric Muller
    • 1
  1. 1.DCSSI Crypto LabPARIS-07 SP

Personalised recommendations